OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28981–28988

Selectively coupling core pairs in multicore photonic crystal fibers: optical couplers, filters and polarization splitters for space-division-multiplexed transmission systems

Rodrigo M. Gerosa, Claudecir R. Biazoli, Cristiano M. B. Cordeiro, and Christiano J. S. de Matos  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28981-28988 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Selective coupling a single pair of cores in a photonic crystal fiber with multiple, initially decoupled, cores is demonstrated through the use of a technique to locally post-process the fiber cross section. Coupling occurs when the hole between the selected core pair is collapsed over a short fiber section, which is accomplished by heating the section while the hole is submitted to an air pressure that is lower than that applied to all other holes in the microstructure. The demonstrated couplers present an estimated insertion loss of ~1 dB and exhibit spectral modulations with a depth of up to 18 dB and a high polarization sensitivity that can be exploited for polarization splitting or filtering in space-division-multiplexed optical interconnection and telecommunication links.

© 2012 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 24, 2012
Revised Manuscript: December 3, 2012
Manuscript Accepted: December 3, 2012
Published: December 13, 2012

Rodrigo M. Gerosa, Claudecir R. Biazoli, Cristiano M. B. Cordeiro, and Christiano J. S. de Matos, "Selectively coupling core pairs in multicore photonic crystal fibers: optical couplers, filters and polarization splitters for space-division-multiplexed transmission systems," Opt. Express 20, 28981-28988 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004). [CrossRef]
  2. B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009). [CrossRef] [PubMed]
  3. A. Harhira, J. Lapointe, and R. Kashyap, “A Simple Bend Sensor Using a Twin Core Fiber Mach-Zehnder Interferometer,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper TuF3.
  4. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing,” J. Lightwave Technol.29(19), 2985–2991 (2011). [CrossRef]
  5. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008). [CrossRef] [PubMed]
  6. X.-H. Fang, M.-L. Hu, B.-W. Liu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010). [CrossRef] [PubMed]
  7. X.-H. Fang, M.-L. Hu, L.-L. Huang, L. Chai, N.-L. Dai, J.-Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C.-Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37(12), 2292–2294 (2012). [CrossRef] [PubMed]
  8. D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011). [CrossRef]
  9. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express15(5), 2151–2165 (2007). [CrossRef] [PubMed]
  10. M. Hirano, “Future of Transmission Fiber,” IEEE Photon. J.3(2), 316–319 (2011). [CrossRef]
  11. B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett.22, 1647–1649 (2010).
  12. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “High-Capacity Space-Division-Multiplexed DWDM Transmissions Using Multicore Fiber,” J. Lightwave Technol.30(4), 486–492 (2012). [CrossRef]
  13. B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-End Multicore Multimode Fiber Optic Link Operating up to 120 Gb/s,” J. Lightwave Technol.30(6), 886–892 (2012). [CrossRef]
  14. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express18(11), 11117–11122 (2010). [CrossRef] [PubMed]
  15. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol.17(5), 807–810 (1999). [CrossRef]
  16. D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006). [CrossRef]
  17. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000). [CrossRef]
  18. K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010). [CrossRef]
  19. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express11(24), 3188–3195 (2003). [CrossRef] [PubMed]
  20. Y. Yan and J. Toulouse, “Nonlinear inter-core coupling in triple-core photonic crystal fibers,” Opt. Express17(22), 20272–20281 (2009). [CrossRef] [PubMed]
  21. F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express18(5), 4709–4716 (2010). [CrossRef] [PubMed]
  22. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber,” Appl. Opt.47(18), 3307–3312 (2008). [CrossRef] [PubMed]
  23. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett.31(18), 2672–2674 (2006). [CrossRef] [PubMed]
  24. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007). [CrossRef] [PubMed]
  25. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011). [CrossRef] [PubMed]
  26. R. M. Gerosa, C. R. Biazoli, C. M. B. Cordeiro, and C. J. S. de Matos, “Post-Processing Multicore Photonic Crystal Fibers for Locally Coupling Selected Core Pairs,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA39.
  27. R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. S. Menezes, and M. A. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express19(24), 24687–24698 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1346 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited