OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29023–29034

Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals

Shuangyi Yan, Xuan Weng, Yuliang Gao, Chao Lu, Alan Pak Tao Lau, Yu Ji, Lei Liu, and Xiaogeng Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 29023-29034 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a simple square or hexagonal 16-QAM signal generation technique using a commercially available dual-drive IQ modulator driven by four binary electrical signals with properly designed amplitudes. We analytically derive the required driving signal amplitudes for square and hexagonal 16-QAM and characterize its implementation penalty. Polarization-multiplexed (PM)-16-QAM signals at 28 Gbuad are experimentally demonstrated and stable performance is achieved with simple bias control.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 17, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: December 3, 2012
Published: December 14, 2012

Shuangyi Yan, Xuan Weng, Yuliang Gao, Chao Lu, Alan Pak Tao Lau, Yu Ji, Lei Liu, and Xiaogeng Xu, "Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals," Opt. Express 20, 29023-29034 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  2. M. Birk, P. Gerard, R. Curto, L. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, G. Nicholl, M. Nowell, and F. Forghieri, “Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link,” in Proceedings Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC) 2010, Paper PDPD1.
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010). [CrossRef]
  4. V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011). [CrossRef]
  5. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” in Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC) (2010), Paper PDPB8.
  6. K. Schuh, F. Buchali, D. Roesener, E. Lach, O. Bertran Pardo, J. Renaudier, G. Charlet, H. Mardoyan, and P. Tran, “15.4 Tb/s transmission over 2400 km using polarization multiplexed 32-Gbaud 16-QAM modulation and coherent detection comprising digital signal processing,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.4.
  7. X. Zhou and J. Yu, “200-Gb/s PDM-16-QAM generation using a new synthesizing method,” in 35th European Conference on Optical Communication,2009. ECOC ’09 (IEEE, 2009), Paper 10.3.5.
  8. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010). [CrossRef] [PubMed]
  9. A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010). [CrossRef]
  10. G. W. Lu, T. Sakamoto, A. Chiba, T. Kawanishi, T. Miyazaki, K. Higuma, M. Sudo, and J. Ichikawa, “16-QAM Transmitter using Monolithically Integrated Quad Mach-Zehnder IQ Modulator,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2010), Paper Mo.1.F.3.
  11. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011). [CrossRef]
  12. C. R. Doerr, L. Zhang, P. Winzer, and A. H. Gnauck, “28-Gbaud InP Square or Hexagonal 16-QAM Modulator,” in Optical Fiber Communication Conference (2011), Paper OMU2.
  13. S. Yan, D. Wang, Y. Gao, C. Lu, A. P. T. Lau, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a single dual drive IQ modulator driven by binary signals,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), Paper OW3H.3.
  14. J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984). [CrossRef]
  15. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top Quant.16(5), 1164–1179 (2010). [CrossRef]
  16. Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011). [CrossRef] [PubMed]
  17. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited