OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29063–29075

Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration

Mohammad Neshat and N. P. Armitage  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 29063-29075 (2012)
http://dx.doi.org/10.1364/OE.20.029063


View Full Text Article

Enhanced HTML    Acrobat PDF (4688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new instrumentation and calibration procedure for terahertz time-domain spectroscopic ellipsometry (THz-TDSE) that is a newly established characterization technique. The experimental setup is capable of providing arbitrary angle of incidence in the range of 15°–85° in the reflection geometry, and with no need for realignment. The setup is also configurable easily into transmission geometry. For this setup, we successfully used hollow core photonic band gap fiber with no pre-chirping in order to deliver a femtosecond laser into a THz photoconductive antenna detector, which is the first demonstration of this kind. The proposed calibration scheme can compensate for the non-ideality of the polarization response of the THz photoconductive antenna detector as well as that of wire grid polarizers used in the setup. In the calibration scheme, the ellipsometric parameters are obtained through a regression algorithm which we have adapted from the conventional regression calibration method developed for rotating element optical ellipsometers, and used here for the first time for THz-TDSE. As a proof-of-principle demonstration, results are presented for a high resistivity silicon substrate as well as an opaque Si substrate with a high phosphorus concentration. We also demonstrate the capacity to measure a few micron thick grown thermal oxide on top of Si. Each sample was characterized by THz-TDSE in reflection geometry with different angle of incidence.

© 2012 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 4, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 26, 2012
Published: December 14, 2012

Citation
Mohammad Neshat and N. P. Armitage, "Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration," Opt. Express 20, 29063-29075 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-29063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990). [CrossRef]
  2. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002). [CrossRef] [PubMed]
  3. D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998). [CrossRef]
  4. L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011). [CrossRef]
  5. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001). [CrossRef]
  6. A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003). [CrossRef]
  7. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  8. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010). [CrossRef] [PubMed]
  9. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  10. K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993). [CrossRef]
  11. J. Bremer, O. Hunderi, K. Fanping, T. Skauli, and E. Wold, “Infrared ellipsometer for the study of surfaces, thin films, and superlattices,” Appl. Opt.31, 471–478 (1992). [CrossRef] [PubMed]
  12. C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).
  13. J. Kircher, R. Henn, M. Cardona, P. L. Richards, and G. P. Williams, “Far-infrared ellipsometry using synchrotron radiation,” J. Opt. Soc. Am. B14, 705–712 (1997). [CrossRef]
  14. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001). [CrossRef]
  15. N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009). [CrossRef]
  16. N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011). [CrossRef] [PubMed]
  17. A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012). [CrossRef]
  18. R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002). [CrossRef]
  19. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express15, 7047–7057 (2007). [CrossRef] [PubMed]
  20. H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009). [CrossRef]
  21. J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011). [CrossRef] [PubMed]
  22. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011). [CrossRef] [PubMed]
  23. R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012). [CrossRef]
  24. C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express20, 12303–12317 (2012). [CrossRef] [PubMed]
  25. D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012). [CrossRef]
  26. N. Yasumatsu and S. Watanabe, “T-ray topography by time-domain polarimetry,” Opt. Lett.37, 2706–2708 (2012). [CrossRef] [PubMed]
  27. C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), chap. 14.
  29. Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).
  30. M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett.37, 1811–1813 (2012). [CrossRef] [PubMed]
  31. B. Johs, “Regression calibration method for rotating element ellipsometers,” Thin Solid Films234, 395 – 398 (1993). [CrossRef]
  32. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited