OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29090–29095

Electro-optically tunable microwave source based on composite-cavity microchip laser

Yunfei Qiao, Shilie Zheng, Hao Chi, Xiaofeng Jin, and Xianmin Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 29090-29095 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO3 cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.

© 2012 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(140.3600) Lasers and laser optics : Lasers, tunable
(230.2090) Optical devices : Electro-optical devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: October 26, 2012
Revised Manuscript: December 2, 2012
Manuscript Accepted: December 6, 2012
Published: December 14, 2012

Yunfei Qiao, Shilie Zheng, Hao Chi, Xiaofeng Jin, and Xianmin Zhang, "Electro-optically tunable microwave source based on composite-cavity microchip laser," Opt. Express 20, 29090-29095 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009). [CrossRef]
  2. C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).
  3. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett.32(9), 1090–1092 (2007). [CrossRef] [PubMed]
  4. R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009). [CrossRef]
  5. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005). [CrossRef] [PubMed]
  6. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron.26(12), 2052–2057 (1990). [CrossRef]
  7. I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011). [CrossRef]
  8. A. McKay, J. Dawes, P. Dekker, and D. Courts, “A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation,” IEEE Int. Top. Mtg. on Microwave Photonics (Korea 2005), pp.161–164.
  9. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001). [CrossRef]
  10. R. A. Witte, Spectrum and Network Measurements (SciTech Publishing, 2001), Chap. 8.
  11. A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007). [CrossRef]
  12. G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited