OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29121–29130

Extremely sub-wavelength THz metal-dielectric wire microcavities

Cheryl Feuillet-Palma, Yanko Todorov, Robert Steed, Angela Vasanelli, Giorgio Biasiol, Lucia Sorba, and Carlo Sirtori  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 29121-29130 (2012)
http://dx.doi.org/10.1364/OE.20.029121


View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate minimal volume wire THz metal-dielectric micro-cavities, in which all but one dimension have been reduced to highly sub-wavelength values. The smallest cavity features an effective volume of 0.4 µm3, which is ~5.10−7 times the volume defined by the resonant vacuum wavelength (λ = 94 µm) to the cube. When combined with a doped multi-quantum well structure, such micro-cavities enter the ultra-strong light matter coupling regime, even if the total number of electrons participating to the coupling is only in the order of 104, thus much less than in previous studies.

© 2012 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(260.3090) Physical optics : Infrared, far
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

History
Original Manuscript: October 23, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 5, 2012
Published: December 14, 2012

Citation
Cheryl Feuillet-Palma, Yanko Todorov, Robert Steed, Angela Vasanelli, Giorgio Biasiol, Lucia Sorba, and Carlo Sirtori, "Extremely sub-wavelength THz metal-dielectric wire microcavities," Opt. Express 20, 29121-29130 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-29121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  2. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett.31(9), 1259–1261 (2006). [CrossRef] [PubMed]
  3. E. Strupiechonski, G. Xu, N. Isac, M. Brekenfeld, Y. Todorov, A. M. Andrews, C. Sirtori, G. Strasser, A. Degiron, and R. Colombelli, “Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance,” Appl. Phys. Lett.100(13), 131113 (2012). [CrossRef]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  5. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  6. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  7. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75(2), 024402 (2012). [CrossRef] [PubMed]
  8. M. J. Adams, An Introduction to Optical Waveguides, (John Wiley & Sons, Chichester, 1981).
  9. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing Millimeter Waves into Microns,” Phys. Rev. Lett.92(14), 143904 (2004). [CrossRef] [PubMed]
  10. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express18(13), 13886–13907 (2010). [CrossRef] [PubMed]
  11. P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett.98(2), 021105 (2011). [CrossRef]
  12. C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B72(11), 115303 (2005). [CrossRef]
  13. Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong Light-Matter Coupling Regime with Polariton Dots,” Phys. Rev. Lett.105(19), 196402 (2010). [CrossRef] [PubMed]
  14. P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98(23), 231114 (2011). [CrossRef]
  15. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong Coupling Regime and Plasmon Polaritons in Parabolic Semiconductor Quantum Wells,” Phys. Rev. Lett.108(10), 106402 (2012). [CrossRef] [PubMed]
  16. C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters,” Phys. Rev. A74(3), 033811 (2006). [CrossRef]
  17. S. De Liberato and C. Ciuti, “Quantum theory of electron tunneling into intersubband cavity polariton states,” Phys. Rev. B79(7), 075317 (2009). [CrossRef]
  18. U. Rössler, Solid State Theory, (Springer, 2009).
  19. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  20. M. Helm, in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, H. C. Liu, F. Capasso, eds. (Academic Press, 2000).
  21. S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B85(3), 035307 (2012). [CrossRef]
  22. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity,” Phys. Rev. Lett.95(6), 067401 (2005). [CrossRef] [PubMed]
  23. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  24. E. M. Purcell, H. Torrey, and R. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev.69(1-2), 674 (1946). [CrossRef]
  25. C. Walther, G. Scalari, M. Beck, and J. Faist, “Purcell effect in the inductor-capacitor laser,” Opt. Lett.36(14), 2623–2625 (2011). [CrossRef] [PubMed]
  26. Y. Todorov, I. Sagnes, I. Abram, and C. Minot, “Purcell Enhancement of Spontaneous Emission from Quantum Cascades inside Mirror-Grating Metal Cavities at THz Frequencies,” Phys. Rev. Lett.99(22), 223603 (2007). [CrossRef] [PubMed]
  27. P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. THz Sci. Technol.2(3), 323–332 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited