OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29174–29184

Multidimensional quantum information based on single-photon temporal wavepackets

Alex Hayat, Xingxing Xing, Amir Feizpour, and Aephraim M. Steinberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29174-29184 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a multidimensional quantum information encoding approach based on temporal modulation of single photons, where the Hilbert space can be spanned by an in-principle infinite set of orthonormal temporal profiles. We analyze two specific realizations of such modulation schemes, and show that error rate per symbol can be smaller than 1% for practical implementations. Temporal modulation may enable multidimensional quantum communication over the existing fiber optical infrastructure, as well as provide an avenue for probing high-dimensional entanglement approaching the continuous limit.

© 2012 OSA

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 28, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: December 3, 2012
Published: December 17, 2012

Alex Hayat, Xingxing Xing, Amir Feizpour, and Aephraim M. Steinberg, "Multidimensional quantum information based on single-photon temporal wavepackets," Opt. Express 20, 29174-29184 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008). [CrossRef]
  2. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005). [CrossRef] [PubMed]
  3. T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in bell experiments using qudits,” Phys. Rev. Lett. 104(6), 060401 (2010). [CrossRef] [PubMed]
  4. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990). [CrossRef] [PubMed]
  5. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989). [CrossRef] [PubMed]
  6. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990). [CrossRef] [PubMed]
  7. P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990). [CrossRef] [PubMed]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  9. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  10. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011). [CrossRef]
  11. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007). [CrossRef]
  12. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999). [CrossRef]
  13. R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004). [CrossRef]
  14. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008). [CrossRef] [PubMed]
  15. A. Eckstein, B. Brecht, and C. Silberhorn, “A quantum pulse gate based on spectrally engineered sum frequency generation,” Opt. Express 19(15), 13770–13778 (2011). [CrossRef] [PubMed]
  16. B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From quantum pulse gate to quantum pulse shaper—engineered frequency conversion in nonlinear optical waveguides,” New J. Phys. 13(6), 065029 (2011). [CrossRef]
  17. C. Polycarpou, K. N. Cassemiro, G. Venturi, A. Zavatta, and M. Bellini, “Adaptive detection of arbitrarily shaped ultrashort quantum light states,” Phys. Rev. Lett. 109(5), 053602 (2012). [CrossRef] [PubMed]
  18. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999). [CrossRef]
  19. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97(22), 223601 (2006). [CrossRef] [PubMed]
  20. F. Wolfgramm, X. Xing, A. Cerè, A. Predojevi?, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008). [CrossRef] [PubMed]
  21. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106(13), 130501 (2011). [CrossRef] [PubMed]
  22. Y. Park, T.-J. Ahn, Y. Dai, J. Yao, and J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008). [CrossRef] [PubMed]
  23. J. L. Walsh, “A Closed Set of Normal Orthogonal Functions,” Am. J. Math. 45(1), 5–24 (1923). [CrossRef]
  24. G. Golub and C. VanLoan, Matrix Computations (Johns Hopkins University Press, 3rd ed., 1996).
  25. M. A. Nielsen and I. L. Chuang, Quantum Computation And Quantum Information (Cambridge, 2000).
  26. G. Smith, “Quantum Channel Capacities,” arXiv:1007.2855 (2010).
  27. R. T. Thew, A. G. White, and W. J. Munro, “Qudit quantum-state tomography,” Phys. Rev. A 66(1), 012303 (2002). [CrossRef]
  28. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited