OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29386–29394

Nanomechanical optical fiber

Zhenggang Lian, Peter Horak, Xian Feng, Limin Xiao, Ken Frampton, Nicholas White, John A. Tucknott, Harvey Rutt, David N. Payne, Will Stewart, and Wei H. Loh  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29386-29394 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical fibers are an excellent transmission medium for light and underpin the infrastructure of the Internet, but generally after fabrication their optical properties cannot be easily modified. Here, we explore the concept of nanomechanical optical fibers where, in addition to the fiber transmission capability, the internal core structure of the fiber can also be controlled through sub-micron mechanical movements. The nanomechanical functionality of such fibers is demonstrated in the form of dual core optical fibers, in which the cores are independently suspended within the fiber. The movement-based optical change is large compared with traditional electro-optical effects and we show that optical switching of light from one core to the other is achieved through moving one core by just 8 nm.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(200.4880) Optics in computing : Optomechanics
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 16, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 23, 2012
Published: December 19, 2012

Zhenggang Lian, Peter Horak, Xian Feng, Limin Xiao, Ken Frampton, Nicholas White, John A. Tucknott, Harvey Rutt, David N. Payne, Will Stewart, and Wei H. Loh, "Nanomechanical optical fiber," Opt. Express 20, 29386-29394 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Craighead, “Nanoelectromechanical systems,” Science290(5496), 1532–1535 (2000). [CrossRef] [PubMed]
  2. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE86(8), 1687–1704 (1998). [CrossRef]
  3. Z. Lian, X. Feng, P. Horak, L. Xiao, Y. Jeong, N. White, K. Frampton, J. A. Tucknott, H. N. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Optical fiber with dual cores suspended in air,” in The 37th edition of the European Conference on Optical Communication, Geneva (2011), paper Mo.2.LeCervin.1.
  4. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  5. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012). [CrossRef] [PubMed]
  6. R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw.3(5), 489–500 (1995).
  7. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature431(7010), 826–829 (2004). [CrossRef] [PubMed]
  8. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).
  9. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett.13(9), 993–995 (2001). [CrossRef]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  11. A. Butsch, C. Conti, F. Biancalana, and P. St. J. Russell, “Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide,” Phys. Rev. Lett.108(9), 093903 (2012). [CrossRef] [PubMed]
  12. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  13. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  14. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).
  15. K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. Van Thourhout, and R. Baets, “Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator,” IEEE Photon. J.4(3), 779–788 (2012). [CrossRef]
  16. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  17. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  18. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett.90(23), 233116 (2007). [CrossRef]
  19. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett.95(3), 033901 (2005). [CrossRef] [PubMed]
  20. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007). [CrossRef]
  21. P. Horak, W. Stewart, and W. H. Loh, “Continuously tunable optical buffer with a dual silicon waveguide design,” Opt. Express19(13), 12456–12461 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited