OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29413–29425

Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements

Romain Ceolato, Nicolas Riviere, and Laurent Hespel  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29413-29425 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5793 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent developments of active hyperspectral systems require optical characterization of man-made materials for instrument calibration. This work presents an original supercontinuum laser-based instrument designed by Onera, The French Aerospace Lab, for fast hyperspectral polarimetric and angular reflectances measurements. The spectral range is from 480 nm to 1000 nm with a 1 nm spectral resolution. Different polarization configurations are made possible in whole spectrum. This paper reviews the design and the calibration of the instrument. Hyper-spectral polarimetric and angular reflectances are measured for reference and man-made materials such as paint coatings. Physical properties of reflectances as positivity, energy conservation and Helmholtz reciprocity are retrieved from measurements.

© 2012 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(290.0290) Scattering : Scattering
(290.5820) Scattering : Scattering measurements
(290.1483) Scattering : BSDF, BRDF, and BTDF
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Remote Sensing

Original Manuscript: August 28, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 18, 2012
Published: December 19, 2012

Romain Ceolato, Nicolas Riviere, and Laurent Hespel, "Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements," Opt. Express 20, 29413-29425 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Laboratory Journal14, 3–28 (2003).
  2. D. Manolakis and D. Marden, “Hyperspectral image processing for automatic target detection applications,” Lincoln Laboratory Journal14, 79–116 (2003).
  3. E. Ientilucci and M. Gartley, “Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery,” Proc. SPIE7334, 73340T1 (2009).
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett.24, 584–587 (1970). [CrossRef]
  5. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  6. Y. Peng and R. Lu, “Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content,” Postharvest Biol. Tec.48, 52–62 (2008). [CrossRef]
  7. C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14, 14, 64047 (2009). [CrossRef]
  8. F. Larusson, S. Fantini, and E. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 946–965 (2011). [CrossRef] [PubMed]
  9. B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE3710, 144–157 (1999). [CrossRef]
  10. L. Farr, “Active Spectral Imaging for Target Detection,” EMRS DTC Technical Conference4, 1–8 (2007).
  11. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express20, 7119–7127 (2012). [CrossRef] [PubMed]
  12. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral Imaging,” Lincoln Laboratory Journal14, 131–144 (2003).
  13. Y. Chen, E. Raikkonen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppa, and R. Chen, “Two-channel Hyperspectral LiDAR with a Supercontinuum laser source,” Sensors10, 7057–7066 (2010). [CrossRef] [PubMed]
  14. B. Mc Guckin, D. Haner, and R. Menzies, “Multiangle imaging spectroradiometer: optical characterization of the calibration panels,” J. Quant. Spectros. Radiat. Transfer.15, 281–290 (2007).
  15. M. Eismann and R. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing43, 455–465 (2005). [CrossRef]
  16. J. Bieniarz, D. Cerra, J. Avbelj, and P. Reinartz, “Resolution enhancement of hyperspectral imagery through spatial-spectral data fusion,” in Proceedings of ISPRS Hannover Workshop 2011: High-Resolution Earth Imaging for Geospatial Information33–37 (2011).
  17. K. Ellis, “Polarimetric bidirectional reflectance distribution function of glossy coatings,” J. Opt. Soc. Am. A13, 1758–1762 (1996). [CrossRef]
  18. S. Nevas, F. Manoocheri, and E. Ikonen, “Gonioreflectometer for measuring spectral diffuse reflectance,” Appl. Opt.43, 6391–6399 (2004). [CrossRef] [PubMed]
  19. J. Liu, M. Noel, and J. Zwinkels, “Design and characterization of a versatile reference instrument for rapid, reproducible specular gloss measurements,” Appl. Opt.44, 4631–4638 (2005). [CrossRef] [PubMed]
  20. H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng.45, 043605 (2005). [CrossRef]
  21. R. Ceolato, N. Riviere, L. Hespel, and B. Biscans, “Probing optical properties of nanomaterials,” SPIE Newsroom (January12, 2012). doi: . [CrossRef]
  22. N. Renard and S. Bourennane, “Improvement of target detection methods by multiway filtering,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing46, 2407–2417 (2008). [CrossRef]
  23. F. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt.4, 767–773 (1965). [CrossRef]
  24. J. V. Martonchik, C. J. Bruegge, and A. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev.19, 9–20 (2000). [CrossRef]
  25. A. Ferrero, J. Campos, A. M. Rabal, A. Pons, M. L. Hernanz, and A. Corrons, “Principal components analysis on the spectral bidirectional reflectance distribution function of ceramic colour standards,” Opt. Express19, 19199–19211 (2011). [CrossRef] [PubMed]
  26. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing - definitions and case studies,” Remote Sens. Environ.103, 27–42 (2006). [CrossRef]
  27. N. Riviere, R. Ceolato, and L. Hespel, “Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique,” Opt. Appl.42, 7–22 (2012).
  28. “Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces,” Am. Soc. Test Mater Standard E1392–96 (1997).
  29. C. L. Betty, “The measured polarized bidirectional reflectance distribution function of a Spectralon calibration target,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing4, 2183–2185 (1996).
  30. G. T. Georgiev and J. J. Butler, “BRDF study of gray-scale Spectralon,” Proc. SPIE7081, 71–79 (2008).
  31. Labsphere, “A guide to diffuse reflectance coatings and materials,” http://www.prolite.co.uk/File/coatingsmaterialsdocumentation.php .
  32. H. Li and K. E. Torrance, “A practical comprehensive light reflection model,” Technical Report PCG-05-03, Cornell Univeristy (2005).
  33. F. J. J. Clarke and D. J. Parry, “Helmholtz reciprocity: Its validity and application to reflectometry,” Ltg. Res. Technol.17, 1–11 (1985). [CrossRef]
  34. H. J. Eom, “Energy conservation and reciprocity of random rough surface scattering,” Appl. Opt.24, 1730–1732 (1985). [CrossRef] [PubMed]
  35. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. A15, 2735–2744 (1998). [CrossRef]
  36. H. Okayama and I. Ogura, “Experimental verification of nonreciprocal response in light scattering from rough surfaces,” Appl. Opt.23, 3349–3352 (1984). [CrossRef] [PubMed]
  37. W. H. Venable, “Comments on reciprocity failure,” Appl. Opt.24, 3943 (1985). [CrossRef] [PubMed]
  38. W. C. Snyder, “Reciprocity of the BRDF in measurements and models of structured surfaces,” in Proceedings of IEEE Transactions on Geoscience and Remote Sensing36, 685–691 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited