OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29472–29478

Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity

Guanzhong Wang, Xiaoshun Jiang, Mingxiao Zhao, Yaoguang Ma, Huibo Fan, Qing Yang, Limin Tong, and Min Xiao  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29472-29478 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a hybrid structure microlaser on chip with a single CdSe nanowire attached to a high-Q silica microdisk cavity at room temperature. When pumped by a 532 nm pulse laser, both single-longitudinal mode and multi-longitudinal mode lasers with linewidth of 0.18 nm are obtained from the hybrid structure with a 58-µm-diameter microdisk and a 250-nm diameter nanowire. The measured lasing threshold of the microlaser is as low as 100 μJ/cm2.

© 2012 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 21, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 11, 2012
Published: December 19, 2012

Guanzhong Wang, Xiaoshun Jiang, Mingxiao Zhao, Yaoguang Ma, Huibo Fan, Qing Yang, Limin Tong, and Min Xiao, "Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity," Opt. Express 20, 29472-29478 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006). [CrossRef]
  2. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  3. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004). [CrossRef] [PubMed]
  4. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006). [CrossRef] [PubMed]
  5. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  6. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247(4), 774–788 (2010).
  7. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010). [CrossRef]
  8. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002). [CrossRef] [PubMed]
  9. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003). [CrossRef] [PubMed]
  10. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett.88(16), 163115 (2006). [CrossRef]
  11. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, “Single-nanowire single-mode laser,” Nano Lett.11(3), 1122–1126 (2011). [CrossRef] [PubMed]
  12. B. Piccione, C.-H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012). [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  14. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012). [CrossRef] [PubMed]
  15. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett.83(6), 1237–1239 (2003). [CrossRef]
  16. C. J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett.6(1), 11–15 (2006). [CrossRef] [PubMed]
  17. Y. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express16(22), 17400–17409 (2008). [CrossRef] [PubMed]
  18. H.-G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett.91(25), 251115 (2007). [CrossRef]
  19. Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009). [CrossRef]
  20. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011). [CrossRef]
  21. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  22. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett.83(4), 797–799 (2003). [CrossRef]
  23. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006). [CrossRef]
  24. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.)15(5), 353–389 (2003). [CrossRef]
  25. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000). [CrossRef] [PubMed]
  26. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003). [CrossRef] [PubMed]
  27. Y. Jun and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron.12(1), 143–147 (2006). [CrossRef]
  28. M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, “Optically bright quantum dots in single Nanowires,” Nano Lett.5(7), 1439–1443 (2005). [CrossRef] [PubMed]
  29. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics4(3), 174–177 (2010). [CrossRef]
  30. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature480(7376), 193–199 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited