OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29507–29517

Fabrication and characterization of porous-core honeycomb bandgap THz fibers

Hualong Bao, Kristian Nielsen, Henrik K. Rasmussen, Peter Uhd Jepsen, and Ole Bang  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29507-29517 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical and experimental investigation of a low-loss porous-core honeycomb fiber for terahertz wave guiding. The introduction of a porous core with hole size of the same dimension as the holes in the surrounding honeycomb cladding results in a fiber that can be drawn with much higher precision and reproducibility than a corresponding air-core fiber. The high-precision hole structure provides very clear bandgap guidance and the location of the two measured bandgaps agree well with simulations based on finite-element modeling. Fiber loss measurements reveal the frequency-dependent coupling loss and propagation loss, and we find that the fiber propagation loss is much lower than the bulk material loss within the first band gap between 0.75 and 1.05 THz.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 11, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 3, 2012
Published: December 19, 2012

Hualong Bao, Kristian Nielsen, Henrik K. Rasmussen, Peter Uhd Jepsen, and Ole Bang, "Fabrication and characterization of porous-core honeycomb bandgap THz fibers," Opt. Express 20, 29507-29517 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004). [CrossRef]
  2. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008). [CrossRef]
  3. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007). [CrossRef]
  4. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef]
  5. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef]
  6. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett.35(17), 2879–2881 (2010). [CrossRef]
  7. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef]
  8. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett.32(9), 1017–1019 (2007). [CrossRef]
  9. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002). [CrossRef]
  10. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008). [CrossRef]
  11. S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express16(12), 8845–8854 (2008). [CrossRef]
  12. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun.282(1), 36–38 (2009). [CrossRef]
  13. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–14062 (2009). [CrossRef]
  14. S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett.98(12), 121104 (2011). [CrossRef]
  15. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett.34(21), 3457–3459 (2009). [CrossRef]
  16. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef]
  17. J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, and C.-K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express18(25), 26332–26338 (2010). [CrossRef]
  18. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011). [CrossRef]
  19. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett.92, 064105 1–3 (2008).
  20. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008). [CrossRef]
  21. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogiaty, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  22. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B28(4), 917–921 (2011). [CrossRef]
  23. Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011). [CrossRef]
  24. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett.36(5), 666–668 (2011). [CrossRef]
  25. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011). [CrossRef]
  26. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011). [CrossRef]
  27. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011). [CrossRef]
  28. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008). [CrossRef]
  29. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009). [CrossRef]
  30. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006). [CrossRef]
  31. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollw-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011). [CrossRef]
  32. M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured polymer optical fibres, (Springer, 2008).
  33. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun.156(4-6), 240–244 (1998). [CrossRef]
  34. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998). [CrossRef]
  35. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011). [CrossRef]
  36. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007). [CrossRef]
  37. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev.5(1), 124–166 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited