OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29553–29567

Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers

Matthew Hayman, Scott Spuler, Bruce Morley, and Joseph VanAndel  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29553-29567 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3509 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe implementation and demonstration of a polarization technique adapted for lidar to measure all unique elements of the volume backscatter phase matrix. This capability allows for detection of preferential orientation within a scattering volume, and may improve scattering inversions on oriented ice crystals. The technique is enabled using a Mueller formalism commonly employed in polarimetry, which does not require the lidar instrument be polarization preserving. Instead, the accuracy of the polarization measurements are limited by the accuracy of the instrument characterization. A high spectral resolution lidar at the National Center for Atmospheric Research was modified to demonstrate this polarization technique. Two observations where the instrument is tilted off zenith are presented. In the first case, the lidar detects flattened large raindrops oriented along the same direction due to drag forces from falling. The second case is an ice cloud approximately 5 km above lidar base that contains preferentially oriented ice crystals in a narrow altitude band.

© 2012 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 30, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 6, 2012
Published: December 19, 2012

Matthew Hayman, Scott Spuler, Bruce Morley, and Joseph VanAndel, "Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers," Opt. Express 20, 29553-29567 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Seliga and V. N. Bringi, “Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation,” J. Appl. Meteor.15, 69–76 (1976). [CrossRef]
  2. J. Vivekanandan, G. Zhang, and E. Brandes, “Polarimetric radar estimators based on a constrained gamma drop size distribution model,” J. Appl. Meteor.43, 217–230 (2004). [CrossRef]
  3. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, 1980).
  4. Y. Tanko and K. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci.46, 20–36 (1989). [CrossRef]
  5. A. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocity,” J. Atmos. Sci.57, 916–938 (2000). [CrossRef]
  6. C. D. Westbrook, “The fall speeds of sub-100μm ice crystals,” Q. J. R. Meteorol. Soc.134, 1243–1251 (2008). [CrossRef]
  7. V. Noel and K. Sassen, “Study of planar ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteor.44, 653–664 (2005). [CrossRef]
  8. V. Noel and H. Chepfer, “Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements,” J. Atmos. Sci.61, 2073–2081 (2005). [CrossRef]
  9. K. Masuda and H. Ishimoto, “Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements,” J. Quant. Spectrosc. Radiat. Transfer85, 183–193 (2004). [CrossRef]
  10. M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A29, 400–409 (2012). [CrossRef]
  11. Y. Balin, B. Kaul, G. Kokhanenko, and D. Winker, “Application of circularly polarized laser radiation for sensing of crystal clouds,” Opt. Express17, 6849–6859 (2009). [CrossRef] [PubMed]
  12. C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol.17, 482–488 (1978). [CrossRef]
  13. L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus B42, 2011–2016 (1990). [CrossRef]
  14. S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, “Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS,” J. Appl. Meteorol.39, 135–153 (2000). [CrossRef]
  15. Y. Hu, P. Yang, B. Lin, G. Gibson, and C. Hostetler, “Discriminating between spherical and non-spherical scatterers,” J. Quant. Spectrosc. Radiat. Transfer79–80, 757–764 (2004).
  16. C. Zhou, P. Yang, A. E. Dessler, Y. Hu, and B. A. Baum, “Study of horizontally oriented ice crystals with CALIPSO observations and comparision with monte carlo radiative transfer simulations,” J. Appl. Meteor. Climatol.51, 1426–1439 (2012). [CrossRef]
  17. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO lidar description and performance assessment,” J. Atmos. Oceanic Technol.26, 1214–1228 (2009). [CrossRef]
  18. C. D. Westbrook, A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, “Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds,” Q. J. R. Meteor. Soc.136, 260–276 (2010). [CrossRef]
  19. F-M Bréon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci.61, 2888–2898 (2004). [CrossRef]
  20. A. J. Heymsfield and M. Kajikawa, “An improived approach to calculating terminal velocities of plate-like crystals and graupel,” J. Atmos. Sci.44, 1088–1099 (1987). [CrossRef]
  21. M. D. Gusta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt.45, 4878–4887 (2006). [CrossRef]
  22. M. D. Shupe, D. D. Turner, V. P. Walden, R. Bennartz, M. P. Cadeddu, B. B. Castellani, C. J. Cox, D. R. Hudak, M. S. Kulie, N. B. Miller, R. R. Neely, and W. D Neff, “High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet,” B. Am. Meteorol. Soc. doi:, In Press. [CrossRef]
  23. R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland for the detection of cloud phase and particle orientation,” J. Atmos. Oceanic Technol. In Review.
  24. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt.43, 6620–6628 (2004). [CrossRef]
  25. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt.49, 2326–2332 (2010). [CrossRef] [PubMed]
  26. K. M. Twietmeyer and R. A. Chipman, “Optimization of Mueller matrix polarimeters in the presence of error sources,” Opt. Express16, 11589–11603 (2008). [CrossRef] [PubMed]
  27. M. H. Smith, “Optimization of a duel-rotating-retarder Mueller matrix polarimeter,” Appl. Opt.412488–2493 (2002). [CrossRef] [PubMed]
  28. E. Eloranta, Chapter 5: High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the AtmosphereNew York, U.S.A. (Springer, 2005).
  29. P. Piironen and E. Eloranta, “Deomonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett.19, 234–236 (1994). [CrossRef] [PubMed]
  30. G. G. Matvienko, I. V. Samokhvalov, and B. V. Kaul, “Research of the cirrus structure with a polarization lidar: parameters of particle orientation in crystal clouds,” in Proc. SPIE5571, 393–400 (2004). [CrossRef]
  31. H. van de Hulst, Light Scattering by Small Particles (Wiley, 1981).
  32. M. Mishchenko and J. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20, 1356–1358 (1995). [CrossRef] [PubMed]
  33. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, “Novel polarization-sensitive micropulse lidar measurement technique,” Opt. Express15, 2785–2790 (2007). [CrossRef] [PubMed]
  34. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt.47, 3795–3802 (2008). [CrossRef] [PubMed]
  35. M. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles, (Academic, 2000).
  36. S. M. Kay, Fundamentals of Statistical Signal Processing, I: Estimation Theory, (Prentice Hall, 1993).
  37. M. Hayman and J. Thayer, “Lidar polarization measurements of PMCs,” J. Atmos. Sol. Terr. Phys.73, 2110–2117 (2011). [CrossRef]
  38. A. Zardecki and A. Deepak, “Forward multiple scattering corrections as a function of detector field of view,” Appl. Opt.22, 2970–2976 (1983). [CrossRef] [PubMed]
  39. X. Zhu, “Explicit Jones transformation matrix for a tilted birefringent plate with its optic axis parallel to the plate surface,” Appl. Opt.33, 3502–3506 (1994). [CrossRef] [PubMed]
  40. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. I. Algorithms,” J. Opt. Soc. Am. A10, 2371–2382 (1993). [CrossRef]
  41. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. II. Theory and physics,” J. Opt. Soc. Am. A10, 2383–2393 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited