OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29626–29633

Mapping the local dielectric response at the nanoscale by means of plasmonic force spectroscopy

Francesco De Angelis, Remo Proietti Zaccaria, and Enzo Di Fabrizio  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29626-29633 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



At the present, the local optical properties of nanostructured materials are difficult to be measured by available instrumentation. We investigated the capability of plasmonic force spectroscopy of measuring the optical response at the nanoscale. The proposed technique is based on force measurements performed by combining Atomic Force Microscopy, or optical tweezers, and adiabatic compression of surface plasmon polaritons. We show that the optical forces, caused by the plasmonic field, depend on the local response of the substrates and, in principle, allow probing both the real and the imaginary part of the local permittivity with a spatial resolution of few nanometers.

© 2012 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 26, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: November 5, 2012
Published: December 20, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Francesco De Angelis, Remo Proietti Zaccaria, and Enzo Di Fabrizio, "Mapping the local dielectric response at the nanoscale by means of plasmonic force spectroscopy," Opt. Express 20, 29626-29633 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  2. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997). [CrossRef]
  3. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002). [CrossRef] [PubMed]
  4. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007). [CrossRef]
  5. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012). [CrossRef] [PubMed]
  6. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20(7), 1201–1209 (2003). [CrossRef] [PubMed]
  7. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010). [CrossRef] [PubMed]
  8. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008). [CrossRef] [PubMed]
  9. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011). [CrossRef] [PubMed]
  10. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010). [CrossRef] [PubMed]
  11. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett. 11(10), 4309–4313 (2011). [CrossRef] [PubMed]
  12. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [CrossRef] [PubMed]
  13. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010). [CrossRef] [PubMed]
  14. J. Kohoutek, D. Dey, A. Bonakdar, R. Gelfand, A. Sklar, O. G. Memis, and H. Mohseni, “Opto-mechanical force mapping of deep subwavelength plasmonic modes,” Nano Lett. 11(8), 3378–3382 (2011). [CrossRef] [PubMed]
  15. J. F. Song, R. P. Zaccaria, G. Dong, E. Di Fabrizio, M. B. Yu, and G. Q. Lo, “Evolution of modes in a metal-coated nano-fiber,” Opt. Express 19(25), 25206–25221 (2011). [CrossRef] [PubMed]
  16. A. Mohammadi and M. Agio, “Light scattering under nanofocusing: toward coherent nanoscopies,” Opt. Commun. 285(16), 3383–3389 (2012). [CrossRef]
  17. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, “Broad band near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum,” Opt. Lett. 28(18), 1686–1688 (2003). [CrossRef] [PubMed]
  18. X. W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express 18(10), 10878–10887 (2010). [CrossRef] [PubMed]
  19. F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011). [CrossRef] [PubMed]
  20. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5(11), 682–687 (2011). [CrossRef]
  21. R. P. Zaccaria, F. De Angelis, A. Toma, L. Razzari, A. Alabastri, G. Das, C. Liberale, and E. Di Fabrizio, “Surface plasmon polariton compression through radially and linearly polarized source,” Opt. Lett. 37(4), 545–547 (2012). [CrossRef] [PubMed]
  22. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  23. R. Proietti Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B 86(3), 035410 (2012). [CrossRef]
  24. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008). [CrossRef] [PubMed]
  25. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007). [CrossRef]
  26. F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011). [CrossRef] [PubMed]
  27. www.lumerical.com
  28. www.cst.com
  29. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010). [CrossRef] [PubMed]
  30. J. N. Israelachvili, Intermolecular and surface forces (Academic Press, 2010).
  31. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993). [CrossRef] [PubMed]
  32. S. J. Youn, T. H. Rho, B. I. Min, and K. S. Kim, “Extended Drude model analysis of noble metals,” Phys. Status Solidi, B Basic Res. 244(4), 1354–1362 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited