OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29634–29645

Cascaded collective decay in regular arrays of cold trapped atoms

Laurin Ostermann, Hashem Zoubi, and Helmut Ritsch  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29634-29645 (2012)
http://dx.doi.org/10.1364/OE.20.029634


View Full Text Article

Enhanced HTML    Acrobat PDF (3447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Energy and lifetime of collective optical excitations in regular arrays of atoms and molecules are significantly influenced by dipole-dipole interaction. While the dynamics of closely positioned atoms can be approximated well by the Dicke superradiance model, the situation of finite regular configurations is hard to access analytically. Most treatments use an exciton based description limited to the lowest excitation manifold. We present a general approach studying the complete decay cascade of a finite regular array of atoms from the fully inverted to the ground state. We explicitly calculate all energy shifts and decay rates for two generic cases of a three-atom linear chain and an equilateral triangle. In numerical calculations we show that despite fairly weak dipole-dipole interactions, collective vacuum coupling allows for superradiant emission as well as subradiant states in larger arrays through multi-particle interference. This induces extra dephasing and modified decay as important limitations for Ramsey experiments in lattice atomic clock setups as well as for the gain and frequency stability of superradiant lasers.

© 2012 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.6630) Lasers and laser optics : Superradiance, superfluorescence
(270.0270) Quantum optics : Quantum optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: October 4, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 28, 2012
Published: December 20, 2012

Citation
Laurin Ostermann, Hashem Zoubi, and Helmut Ritsch, "Cascaded collective decay in regular arrays of cold trapped atoms," Opt. Express 20, 29634-29645 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29634


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93, 99–110 (1954). URL http://link.aps.org/doi/10.1103/PhysRev.93.99 . [CrossRef]
  2. J. MacGillivray and M. Feld, “Theory of superradiance in an extended, optically thick medium,” Rhys. Rv. A14(3), 1169–1189 (1976).
  3. M. Gross and S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep.93(5), 301–396 (1982). URL http://www.sciencedirect.com/science/article/pii/0370157382901028 . [CrossRef]
  4. N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke Superradiance in optically pumped HFgGas,” Phys. Rev. Lett.30, 309–312 (1973). URL http://link.aps.org/doi/10.1103/PhysRevLett.30.309 . [CrossRef]
  5. S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, D. Pritchard, and W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein condensate,” Science285(5427), 571–574 (1999). [CrossRef] [PubMed]
  6. M. Moore and P. Meystre, “Theory of superradiant scattering of laser light from Bose-Einstein condensates,” Phys. Rev. Lett.83(25), 5202–5205 (1999). [CrossRef]
  7. R. Bonifacio, P. Schwendimann, and F. Haake, “Quantum statistical theory of superradiance. I,” Phys. Rev. A4(1), 302–313 (1971). [CrossRef]
  8. N. E. Rehler and J. H. Eberly, “Superradiance,” Phys. Rev. A3, 1735–1751 (1971). URL http://link.aps.org/doi/10.1103/PhysRevA.3.1735 . [CrossRef]
  9. S. Davydov, Theory of Molecular Excitons (Plenum PressNew York, 1971).
  10. V. Agranovich, Excitations in Organic Solids (Oxford University Press, UK, 2009).
  11. H. Zoubi and H. Ritsch, “Lifetime and emission characteristics of collective electronic excitations in two-dimensional optical lattices,” Phys. Rev. A83(6), 063831 (2011). [CrossRef]
  12. H. Zoubi and H. Ritsch, “Metastability and directional emission characteristics of excitons in 1D optical lattices,” Europhys. Lett.90, 23001 (2010). [CrossRef]
  13. I. Carusotto, M. Antezza, F. Bariani, S. De Liberato, and C. Ciuti, “Optical properties of atomic Mott insulators: from slow light to dynamical Casimir effects,” Phys. Rev. A77(6), 063621 (2008). [CrossRef]
  14. M. Takamoto, F. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature435(7040), 321–324 (2005). [CrossRef] [PubMed]
  15. L. Casperson, “Spectral narrowing in double-pass superradiant lasers,” Optics Communications8(1), 85–87 (1973). [CrossRef]
  16. J. Bohnet, Z. Chen, J. Weiner, D. Meiser, M. Holland, and J. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature484(7392), 78–81 (2012). [CrossRef] [PubMed]
  17. K. Henschel, J. Majer, J. Schmiedmayer, and H. Ritsch, “Cavity QED with an ultracold ensemble on a chip: prospects for strong magnetic coupling at finite temperatures,” Phys. Rev. A82(3), 033810 (2010). [CrossRef]
  18. Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep.372(5), 369–443 (2002). [CrossRef]
  19. R. Lehmberg, “Radiation from an N-atom system. I. General formalism,” Phys. Rev. A2(3), 883–888 (1970). [CrossRef]
  20. J. Guo and J. Cooper, “Cooling and resonance fluorescence of two atoms in a one-dimensional optical molasses,” Phys. Rev. A51(4), 3128–3135 (1995). [CrossRef] [PubMed]
  21. Z. Ficek, R. Tanaś, and S. Kielich, “Quantum beats and superradiant effects in the spontaneous emission from two nonidentical atoms,” Physica A146(3), 452–482 (1987). [CrossRef]
  22. H. Zoubi, “Collective light emission of a finite size atomic chain,” EPL100(24002) (2012). [CrossRef]
  23. M. Takamoto and H. Katori, “Spectroscopy of the 1S0-3P0 Clock Transition of 87Sr in an optical lattice,” Phys. Rev. Lett.91(22), 223001 (2003). [CrossRef] [PubMed]
  24. I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Physics1(1), 23–30 (2005). [CrossRef]
  25. G. Campbell, A. Ludlow, S. Blatt, J. Thomsen, M. Martin, M. de Miranda, T. Zelevinsky, M. Boyd, J. Ye, S. Diddams, T. Heavner, T. Parker, and S. Jefferts, “The absolute frequency of the 87Sr optical clock transition,” Metrologia45, 539–548 (2008). [CrossRef]
  26. P. Horak, K. Gheri, and H. Ritsch, “Quantum dynamics of a single-atom cascade laser,” Phys. Rev. A51(4), 3257–3266 (1995). [CrossRef] [PubMed]
  27. G. Lin and S. Yelin, “Superradiance in spin-j particles: effects of multiple levels,” Phys. Rev. A85(3), 033831 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited