OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29705–29716

Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application

Annalisa De Angelis, Alexis Labruyère, Vincent Couderc, Philippe Leproux, Alessandro Tonello, Hiroki Segawa, Masanari Okuno, Hideaki Kano, Delia Arnaud-Cormos, Philippe Lévèque, and Hiro-o Hamaguchi  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29705-29716 (2012)
http://dx.doi.org/10.1364/OE.20.029705


View Full Text Article

Enhanced HTML    Acrobat PDF (3025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation. However, we show that this type of compact system can be particularly suitable for achieving CARS measurement.

© 2012 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(180.5655) Microscopy : Raman microscopy

ToC Category:
Microscopy

History
Original Manuscript: November 6, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: November 30, 2012
Published: December 20, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Annalisa De Angelis, Alexis Labruyère, Vincent Couderc, Philippe Leproux, Alessandro Tonello, Hiroki Segawa, Masanari Okuno, Hideaki Kano, Delia Arnaud-Cormos, Philippe Lévèque, and Hiro-o Hamaguchi, "Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application," Opt. Express 20, 29705-29716 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99, 2957–2976 (1999). [CrossRef]
  2. O. Samek, H. H. Telle, L. G. Harris, M. Bloomfield, and D. Mack, “Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections,” Laser Phys. Lett.5, 465–470 (2008). [CrossRef]
  3. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25, 13–23 (1994). [CrossRef]
  4. W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, “Two-color Raman spectroscopy for the simultaneous detection of chemotherapeutics and antioxidative status of human skin,” Laser Phys. Lett.8, 895–900 (2011). [CrossRef]
  5. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem49, 6773–6777 (2010). [CrossRef]
  6. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83, 502–509 (2002). [CrossRef] [PubMed]
  7. E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better,” Opt. Commun.274, 433–440 (2007). [CrossRef]
  8. S. Gao, X. Li, and S. Zhang, “Supercontinuum generation by combining clad-pumped Er/Yb co-doped fiber amplifier and highly nonlinear photonic crystal fiber,” Optik121, 2110–2112 (2010). [CrossRef]
  9. J. X. Cheng and T. B. Huff, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc.225, 175–182 (2007). [CrossRef] [PubMed]
  10. K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, “Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography,” Laser Phys. Lett.8, 465–468 (2011). [CrossRef]
  11. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29, 2701–2703 (2004). [CrossRef] [PubMed]
  12. H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc.37, 411–415 (2006). [CrossRef]
  13. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and application,” J. Phys. Chem.108, 827–840 (2004). [CrossRef]
  14. G. Bergner, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, and J. Popp, “Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy,” Laser Phys. Lett.8, 541–546 (2011). [CrossRef]
  15. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999). [CrossRef]
  16. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with collinear configuration,” Opt. Lett.25, 1768–1770 (2000). [CrossRef]
  17. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27, 1168–1170 (2002). [CrossRef]
  18. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Coté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA102, 16807 (2005). [CrossRef] [PubMed]
  19. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett.28, 1123–1125 (2003). [CrossRef] [PubMed]
  20. H. Kano and H. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13, 1322–1327 (2005). [CrossRef] [PubMed]
  21. V. P. Mitrokhin, A. B. Fedotov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter,” Opt. Lett.32, 3471–3473 (2007). [CrossRef] [PubMed]
  22. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-stokes Raman scattering microscopy,” Opt. Lett.31, 1292–1294 (2006). [CrossRef] [PubMed]
  23. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband (>2000 cm−1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source,” Opt. Lett.32, 3050–3052 (2007). [CrossRef] [PubMed]
  24. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett.33, 923–925 (2008). [CrossRef] [PubMed]
  25. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B105, 1277–1280 (2001). [CrossRef]
  26. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express16, 3644–3651 (2008). [CrossRef] [PubMed]
  27. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt.4, 883–889 (1965). [CrossRef]
  28. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A39, 3406–3413 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited