OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29717–29726

Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods

David J. Hilton  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29717-29726 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1586 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1±0.5 ps at 1.5 K and 5.0±0.5 ps at 75 K.

© 2012 OSA

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:

Original Manuscript: October 26, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: December 11, 2012
Published: December 20, 2012

David J. Hilton, "Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods," Opt. Express 20, 29717-29726 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Sarkar and R. J. Nicholas, “Cyclotron resonance linewidth in a two-dimensional electron gas,” Surf. Sci.113, 326–332 (1982). [CrossRef]
  2. M. Chou, D. Tsui, and G. Weimann, “Cyclotron resonance of high-mobility two-dimensional electrons at extremely low densities,” Phys. Rev. B37, 848–854 (1988). [CrossRef]
  3. D. J. Hilton, T. Arikawa, and J. Kono, “Cyclotron resonance,” in Characterization of Materials, E. N. Kaufmann, ed. (John Wiley and Sons, Inc, New York, 2012), p. 2438.
  4. D. C. Tsui, H. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett.48, 1559–1562 (1982). [CrossRef]
  5. X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, “Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases,” Opt. Express18, 12354–12361 (2010). [CrossRef] [PubMed]
  6. X. Wang, D. J. Hilton, L. Ren, D. M. Mittleman, J. Kono, and J. L. Reno, “Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas,” Opt. Lett.32, 1845–1847 (2007). [CrossRef] [PubMed]
  7. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron.2, 739–746 (1996). [CrossRef]
  8. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B18, 823–831 (2001). [CrossRef]
  9. D. Mittleman, ed., Sensing with Terahertz Radiation (Springer, Berlin, 2002).
  10. M. C. Nuss and J. Orenstein, Terahertz Time-Domain Spectroscopy, vol. 74 (Springer, Berlin, 1998).
  11. G. Landwehr, Landau Level Spectroscopy (North-Holland, New York, 1990).
  12. T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84, 241307 (2011). [CrossRef]
  13. S. E. Ralph, S. Perkowitz, N. Katzenellenbogen, and D. Grischkowsky, “Terahertz spectroscopy of optically thick multilayered semiconductor structures,” J. Opt. Soc. Am. B11, 2528–2532 (1994). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  15. J. W. Goodman, Introduction To Fourier Optics (McGraw-Hill, New York, 1996).
  16. S. Teitler and B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am.60, 830–834 (1970). [CrossRef]
  17. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am.62, 502–510 (1972). [CrossRef]
  18. H. Wöhler, M. Fritsch, G. Haas, and D. A. Mlynski, “Characteristic matrix method for stratified anisotropic media: optical properties of special configurations,” J. Opt. Soc. Am. A8, 536–540 (1991). [CrossRef]
  19. J. S. Blakemore, “Intrinsic density ni(T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients,” J. Appl. Phys.53, 520–531 (1981). [CrossRef]
  20. R. W. Boyd, Nonlinear Optics (Academic Press, 1991).
  21. A. Kawabata, “Theory of cyclotron resonance line width,” J. Phys. Soc. Jpn.23, 999–1006 (1967). [CrossRef]
  22. P. Argyres and J. Sigel, “Theory of cyclotron-resonance absorption,” Phys. Rev. B10, 1139–1148 (1974). [CrossRef]
  23. V. K. Arora and H. N. Spector, “Quantum-limit cyclotron resonance linewidth in semiconductors,” phys. stat. sol. (b)94, 701–709 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited