OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29727–29742

Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions

Brian Brumfield and Gerard Wysocki  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29727-29742 (2012)
http://dx.doi.org/10.1364/OE.20.029727


View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O2 at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10−8 rad/Hz1/2 is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz1/2 with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

© 2012 OSA

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Spectroscopy

History
Original Manuscript: October 24, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 12, 2012
Published: December 20, 2012

Citation
Brian Brumfield and Gerard Wysocki, "Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions," Opt. Express 20, 29727-29742 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kocache, “The measurement of oxygen on gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986). [CrossRef]
  2. B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007). [CrossRef]
  3. R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993). [CrossRef]
  4. A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010). [CrossRef] [PubMed]
  5. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004). [CrossRef]
  6. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001). [CrossRef]
  7. M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994). [CrossRef]
  8. A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999). [CrossRef]
  9. R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988). [CrossRef]
  10. H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006). [CrossRef]
  11. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005). [CrossRef]
  12. B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003). [CrossRef]
  13. R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993). [PubMed]
  14. J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010). [CrossRef]
  15. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009). [CrossRef]
  16. R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997). [CrossRef]
  17. R. J. Brecha and L. M. Pedrotti, “Analysis of imperfect polarizer effects in magnetic rotation spectroscopy,” Opt. Express5(5), 101–113 (1999). [CrossRef] [PubMed]
  18. R. J. Brecha, “Noninvasive magnetometry based on magnetic rotation spectroscopy of oxygen,” Appl. Opt.37(21), 4834–4839 (1998). [CrossRef] [PubMed]
  19. S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011). [CrossRef]
  20. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt.35(6), 973–985 (1996). [CrossRef] [PubMed]
  21. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980). [CrossRef]
  22. M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994). [CrossRef]
  23. M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994). [CrossRef]
  24. J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, “Trace detection of NO2 by frequency modulation enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995). [CrossRef]
  25. Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” M. Razeghi, E. Tournie, and G. J. Brown, eds. (SPIE, San Francisco, California, USA, 2012), pp. 82682F–82688.
  26. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt.44(31), 6545–6556 (2005). [CrossRef] [PubMed]
  27. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am.31(7), 488–493 (1941). [CrossRef]
  28. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B7(8), 1673–1684 (1990). [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems. IV,” J. Opt. Soc. Am.32(8), 486–493 (1942). [CrossRef]
  30. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010). [CrossRef]
  31. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984). [CrossRef]
  32. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  33. H. Adams, J. L. Hall, L. A. Russell, J. V. V. Kasper, F. K. Tittel, and R. F. Curl, “Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis,” J. Opt. Soc. Am. B2(5), 776–780 (1985). [CrossRef]
  34. S. So, O. Marchat, E. Jeng, and G. Wysocki, “Ultra-sensitive faraday rotation spectroscopy of O2: model vs. experiment,” in CLEO(Optical Society of America, San Jose, 2011), p. CThT2.
  35. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett.11(10), 623–625 (1986). [CrossRef] [PubMed]
  36. E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited