OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29784–29797

Micro-bending based optical band-pass filter and its application in S-band Thulium-doped fiber amplifier

S. D. Emami, H. A. A. Rashid, A. Zarifi, A. Zarei, M. R. K. Soltanian, S. Z. M. Yasin, H. Ahmad, and S. W. Harun  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29784-29797 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new approach for filtering an optical band-pass in optical amplifier is proposed using a macro bending. The proposed filter leverages the bending loss of higher order modes at shorter wavelengths. At longer wavelengths, the filter increases fiber’s bending loss as the fundamental mode ‘tail’ is leak out from the cladding. The combination of wavelength dependent loss at longer and shorter wavelength gives rise to the optical band-pass filter characteristic inside the fiber. The simulated spectral response of the filter is found to be in good agreement with the experimental results. Subsequently, the proposed optical band-pass filter is applied in Thulium-doped fiber amplifiers (TDFA) system for gain and noise figure enhancements. The filter functions to suppress both the amplified spontaneous emission (ASE) at 800 nm and 1800 nm wavelength regions and thus improves both gain and noise figure performances in S-band region. By bending of the gain medium, gain and noise figure of the TDFA are improved by about 2 dB and 0.5 dB respectively, within a wavelength region from 1440 and 1500 nm when the 1050 nm pump power is fixed at 250 mW.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(120.2440) Instrumentation, measurement, and metrology : Filters

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 14, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 8, 2012
Published: December 21, 2012

S. D. Emami, H. A. A. Rashid, A. Zarifi, A. Zarei, M. R. K. Soltanian, S. Z. M. Yasin, H. Ahmad, and S. W. Harun, "Micro-bending based optical band-pass filter and its application in S-band Thulium-doped fiber amplifier," Opt. Express 20, 29784-29797 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Riza and S. Sumriddetchkajorn, “Fault-tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device,” Appl. Opt.37(27), 6355–6361 (1998). [CrossRef] [PubMed]
  2. D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express2(6), 1703–1716 (2011). [CrossRef] [PubMed]
  3. S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999). [CrossRef]
  4. M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985). [CrossRef]
  5. R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986). [CrossRef]
  6. K. Okamoto and J. Noda, “Fiber-optic spectral filter consisting of concatenated dual-core fibers,” Optical Fiber Communication Conference (OFC), Atlanta, Georgia (February 24, 1986).
  7. A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991). [CrossRef]
  8. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol.3(4), 895–900 (1985). [CrossRef]
  9. W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992). [CrossRef]
  10. K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990). [CrossRef]
  11. Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008). [CrossRef]
  12. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–717 (1977).
  13. A. B. Sharma, A. H. Al-Ani, and S. J. Halme, “Constant-curvature loss in monomode fibers: an experimental investigation,” Appl. Opt.23(19), 3297–3301 (1984). [CrossRef] [PubMed]
  14. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, NY, 1997).
  15. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007). [CrossRef]
  16. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B66(3), 216–220 (1976). [CrossRef]
  17. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am.66(4), 311–320 (1976). [CrossRef]
  18. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, NY, 1982).
  19. J. J. R., “Optical fiber communication system comprising mode-stripping means,” US patent (1990).
  20. M. Bigot-Astruc, D. Molin, P. Nouchi, P. Matthijsse, L. De Montmorillon, Y. Lumineau, I. Flammer, P. Sillard, and F. Gooijer, “Single mode optical fiber with low bending losses,” European Patent (2006).
  21. C. HI1060, “Single-mode component fiber for high performance photonic applications,” (2003).
  22. S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008). [CrossRef]
  23. S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Shorter wavelength gain shift In EDFA Using a macro-bending approach,” 2008 IEEE Photonicsglobal@Singapore (Ipgc), Vols 1 and 2, 412–414 (2008).
  24. M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011). [CrossRef]
  25. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, “S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration,” Opt. Lett.31(22), 3228–3230 (2006). [CrossRef] [PubMed]
  26. P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006). [CrossRef]
  27. R. M. Percival, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett.30, 1684–1685 (1994). [CrossRef]
  28. P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007). [CrossRef]
  29. B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007). [CrossRef]
  30. B. Faure, W. Blanc, B. Dussardier, G. Monnom, and P. Peterka, “Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping,” Optical Amplifiers and Their Applications Conference, San Francisco, California (2004).
  31. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004). [CrossRef]
  32. J. Michael and F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).
  33. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, NY, 1994).
  34. S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006). [CrossRef]
  35. Y. Yano and T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited