OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29867–29881

Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging

Joshua L. Santarpia, Yong-Le Pan, Steven C. Hill, Neal Baker, Brian Cottrell, Laura McKee, Shanna Ratnesar-Shumate, and Ronald G. Pinnick  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29867-29881 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone

© 2012 OSA

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 25, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 11, 2012
Published: December 21, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Joshua L. Santarpia, Yong-Le Pan, Steven C. Hill, Neal Baker, Brian Cottrell, Laura McKee, Shanna Ratnesar-Shumate, and Ronald G. Pinnick, "Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging," Opt. Express 20, 29867-29881 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lighthart and A. J. Mohr, eds., Atmospheric Microbial Aerosols (Chapman & Hall, 1994).
  2. W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007). [CrossRef]
  3. J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009). [CrossRef] [PubMed]
  4. J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010). [CrossRef]
  5. R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011). [CrossRef] [PubMed]
  6. V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).
  7. J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006). [CrossRef]
  8. R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009). [CrossRef] [PubMed]
  9. J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005). [CrossRef]
  10. T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008). [CrossRef] [PubMed]
  11. A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009). [CrossRef] [PubMed]
  12. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt.34(30), 7149–7155 (1995). [CrossRef] [PubMed]
  13. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997). [CrossRef] [PubMed]
  14. J. Ho, and Y-W., December 23, 1997 (Filed March 19, 1996). Fluorescent biological particle detection system. United States patent 5,701,012.
  15. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999). [CrossRef]
  16. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005). [CrossRef] [PubMed]
  17. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009). [CrossRef] [PubMed]
  18. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003). [CrossRef]
  19. Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009). [CrossRef] [PubMed]
  20. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010). [CrossRef] [PubMed]
  21. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999). [CrossRef]
  22. V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004). [CrossRef] [PubMed]
  23. V. Sivaprakasam, H.-B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011). [CrossRef] [PubMed]
  24. D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009). [CrossRef]
  25. K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010). [CrossRef]
  26. A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003). [CrossRef]
  27. R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004). [CrossRef]
  28. Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007). [CrossRef]
  29. A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010). [CrossRef]
  30. A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011). [CrossRef]
  31. V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003). [CrossRef]
  32. R. DeFreez, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE 7484, 74840H (15 pp.)(2009).
  33. C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011). [CrossRef]
  34. Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007). [CrossRef] [PubMed]
  35. W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966). [PubMed]
  36. F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970). [CrossRef] [PubMed]
  37. R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007). [PubMed]
  38. H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007). [CrossRef]
  39. L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002). [CrossRef] [PubMed]
  40. J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000). [CrossRef]
  41. M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008). [CrossRef] [PubMed]
  42. A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).
  43. A. V. Ignatenko, “Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins,” J. Appl. Spectrosc.49(1), 691–695 (1988). [CrossRef]
  44. E. Fujimori, “Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen,” Eur. J. Biochem.152(2), 299–306 (1985). [CrossRef] [PubMed]
  45. J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969). [CrossRef] [PubMed]
  46. T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000). [CrossRef] [PubMed]
  47. V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001). [CrossRef]
  48. V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” J. Fluoresc.13(5), 403–420 (2003). [CrossRef]
  49. L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958). [PubMed]
  50. V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).
  51. K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011). [CrossRef] [PubMed]
  52. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011). [CrossRef]
  53. S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011). [CrossRef]
  54. J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005). [CrossRef]
  55. R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987). [CrossRef]
  56. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001). [CrossRef] [PubMed]
  57. J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974). [CrossRef] [PubMed]
  58. Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001). [CrossRef]
  59. J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997). [CrossRef] [PubMed]
  60. B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996). [CrossRef] [PubMed]
  61. M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011). [CrossRef] [PubMed]
  62. W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993). [PubMed]
  63. W. A. Pryor, “How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?” Free Radic. Biol. Med.12(1), 83–88 (1992). [CrossRef] [PubMed]
  64. W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited