OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29900–29908

Femtosecond laser volume ablation rate and threshold measurements by differential weighing

D Pietroy, Y Di Maio, B Moine, E Baubeau, and E Audouard  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29900-29908 (2012)
http://dx.doi.org/10.1364/OE.20.029900


View Full Text Article

Enhanced HTML    Acrobat PDF (2241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Precise weight measurements of stainless steel, PZT and PMMA samples were performed after groove machining with femtosecond laser pulses (150 fs, 800 nm, 5 kHz) to determine volume ablation rates and ablation threshold with good accuracy. Weighing clearly enables faster determination of such phenomenological parameters without any methodological issue compared to other methods. Comparisons of the three types of materials reveal similar monotonous trends depending on peak fluences from 0.2 to 15 J/cm2. The metallic target exhibits both the lowest volume ablation rate under the highest irradiation conditions with almost 400 µm3/pulse and the lowest ablation threshold with 0.13 J/cm2. Ceramic PZT reaches 3.103 µm3/pulse with a threshold fluence of 0.26 J/cm2 while polymer PMMA attains 104 µm3/pulse for a 0.76 J/cm2 threshold. Pros and cons of this method are also deduced from complementary results obtained on microscopic and confocal characterizations.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.4180) Nonlinear optics : Multiphoton processes
(320.7120) Ultrafast optics : Ultrafast phenomena
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Laser Microfabrication

History
Original Manuscript: September 27, 2012
Revised Manuscript: November 13, 2012
Manuscript Accepted: November 26, 2012
Published: December 21, 2012

Citation
D Pietroy, Y Di Maio, B Moine, E Baubeau, and E Audouard, "Femtosecond laser volume ablation rate and threshold measurements by differential weighing," Opt. Express 20, 29900-29908 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. H. Rizvi, “Femtosecond laser micromachining: Current status and applications,” Riken Rev.50, 107–112 (2003).
  2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33(10), 1706–1716 (1997). [CrossRef]
  3. H. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “Femtosecond laser drilling of alumina ceramic substrates,” Appl. Phys., A Mater. Sci. Process.101(2), 271–278 (2010). [CrossRef]
  4. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 307–310 (2003).
  5. X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality laser cutting of alumina substrates,” Opt. Lasers Eng.48(6), 657–663 (2010). [CrossRef]
  6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Toward nanostructuring with femtosecond pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).
  7. L. M. Machado, R. E. Samad, A. Z. Freitas, N. D. Vieira, and W. de Rossi, “Microchannels direct machining using the femtosecond smooth ablation method,” Phys. Proc.12, 67–75 (2011). [CrossRef]
  8. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010). [CrossRef] [PubMed]
  9. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997). [CrossRef]
  10. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009). [CrossRef] [PubMed]
  11. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett.80(21), 3886–3888 (2002). [CrossRef]
  12. S. Valette, E. Audouard, R. Le Harzic, N. Huot, P. Laporte, and R. Fortunier, “Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations,” Appl. Surf. Sci.239(3-4), 381–386 (2005). [CrossRef]
  13. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picoseconds and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996). [CrossRef]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  15. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast micromachining of common metals in air,” Proc. SPIE4876, 470–478 (2003). [CrossRef]
  16. M. Hashida, A. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” Proc. SPIE4423, 178–185 (2001). [CrossRef]
  17. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process.94(4), 889–897 (2009). [CrossRef]
  18. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci.249(1-4), 322–331 (2005). [CrossRef]
  19. J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sens. Actuators A Phys.136(2), 554–563 (2007). [CrossRef]
  20. J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, “Hydrodynamic simulations of metal ablation by femtosecond laser irradiation,” Phys. Rev. B71(16), 1–6 (2005). [CrossRef]
  21. Y. Di Maio, J. P. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of PZT ceramic analysis methods and comparision with metals,” Opt. Lasers Eng.50(11), 1582–1591 (2012). [CrossRef]
  22. J. Bonse, M. Geuss, S. Baudach, H. Sturm, and W. Kautek, “The precision of the femtosecond Pulse Laser Ablation of TiN Films on Silicon,” Appl. Phys., A Mater. Sci. Process.69(7), S399–S402 (1999). [CrossRef]
  23. W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, “Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals,” Appl. Surf. Sci.255(5), 2303–2311 (2008). [CrossRef]
  24. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express17(23), 20756–20761 (2009). [CrossRef] [PubMed]
  25. V. Kara and H. Kizil, “Titanium micromachining by femtosecond laser,” Opt. Lasers Eng.50(2), 140–147 (2012). [CrossRef]
  26. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse duration from ps to fs,” Proc. SPIE8243, 824307 1–13 (2012).
  27. P. Gonzales, R. Bernath, J. Duncan, T. Olmstead, and M. Richardson, “Femtosecond ablation scaling for different materials,” Proc. SPIE5458, 265–272 (2004). [CrossRef]
  28. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem.72(9), 2087–2092 (2000). [CrossRef] [PubMed]
  29. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, “Table-top 50W laser system for ultra-fast laser ablation,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1051–1055 (2004). [CrossRef]
  30. M. K. Head and N. R. Buenfeld, “Confocal imaging of porosity in hardened concrete,” Cement Concr. Res.36(5), 896–911 (2006). [CrossRef]
  31. J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Phys. Chem. Earth A24(7), 551–561 (1999). [CrossRef]
  32. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems (Academic Press, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited