OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29909–29922

Optical antenna design for fluorescence enhancement in the ultraviolet

Xiaojin Jiao and Steve Blair  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29909-29922 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through rational design, we compare the performance of three plasmonic antenna structures for UV fluorescence enhancement. Among the antenna performance metrics considered are the local increase in excitation intensity and the increase in quantum efficiency, the product of which represents the net fluorescence enhancement. With realistic structures in aluminum, we predict that greater than 100× net enhancement can be obtained.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Optics at Surfaces

Original Manuscript: September 6, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 1, 2012
Published: December 21, 2012

Xiaojin Jiao and Steve Blair, "Optical antenna design for fluorescence enhancement in the ultraviolet," Opt. Express 20, 29909-29922 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett.1, 35–42 (1967). [CrossRef]
  2. C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc.106, 5008–5010 (1984). [CrossRef]
  3. G. D. Fasman, ed. Practical Handbook of Biochemistry and Molecular Biology. CRC Press1989.
  4. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79, 6480–6487 (2007). [CrossRef] [PubMed]
  5. H. Szmacinski, K. Ray, and J. R. Lakowicz, “Metal-enhanced fluorescence of tryptophan residues in proteins: Application towards label-free bioassays,” Anal. Biochem.385, 358–364 (2008). [CrossRef] [PubMed]
  6. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286, 875–879 (2001). [CrossRef] [PubMed]
  7. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D: Appl. Phys.36, R240–R249 (2003). [CrossRef]
  8. K. Aslan, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films,” Anal. Chem.80, 7304–7312 (2008). [CrossRef] [PubMed]
  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]
  10. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced raman scattering,” J. Raman Spectrosc.40, 1324–1330 (2009). [CrossRef]
  11. C. C. Davis, “Fluorescence: Molecules in a tight spot,” Nat. Photonics3, 608–609 (2009). [CrossRef]
  12. S. Attavar, M. Diwekar, and S. Blair, “Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet,” Lab Chip11, 841–844 (2011). [CrossRef] [PubMed]
  13. M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15, 343–351 (2006). [CrossRef] [PubMed]
  14. K. Aslan and C. D. Geddes, “Directional surface plasmon coupled luminescence for analytical sensing applications: Which metal, what wavelength, what observation angle?,” Anal. Chem.81, 6913–6922 (2009). [CrossRef] [PubMed]
  15. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010). [CrossRef]
  16. S. Blair and J. Wenger, “Enhancing fluorescence with sub-wavelength metallic apertures,” in The Role of Plasmonic Engineering in Surface-Enhanced Fluorescence (C. D. Geddes, ed.) ch. 17 John Wiley & Sons2008.
  17. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  18. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011). [CrossRef] [PubMed]
  19. F. Mahdavi and S. Blair, “Nanoaperture fluorescence enhancement in the ultraviolet,” Plasmonics5, 169–174 (2010). [CrossRef]
  20. E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press, London (1985)
  21. L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006). [CrossRef]
  22. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008). [CrossRef] [PubMed]
  23. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18, 11292–11299 (2010). [CrossRef] [PubMed]
  24. M. Kuttge, F. J. G. de Abajo, and A. Polman, “How grooves reflect and confine surface plasmon polaritons,” Opt. Express17, 10385–10392 (2009). [CrossRef] [PubMed]
  25. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011). [CrossRef] [PubMed]
  26. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garvia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited