OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29923–29930

Plasmon hybridization for enhanced nonlinear optical response

Ghazal Hajisalem, Aftab Ahmed, Yuanjie Pang, and Reuven Gordon  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29923-29930 (2012)
http://dx.doi.org/10.1364/OE.20.029923


View Full Text Article

Enhanced HTML    Acrobat PDF (1952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the plasmon hybridization between silver nanoprisms and a thin gold film as a means to tune the plasmon resonance and to achieve enhanced optical second harmonic generation. The hybridization enhances the second harmonic counts by nearly three orders of magnitude when varying the spacer layer between the nanoprisms and the gold film. Finite-difference time-domain calculations agree within a factor of 2 with the experimental findings in terms of the predicted enhancement factor. This plasmon hybridization approach is promising for future applications, including multi-photon lithography and nonlinear sensing using metal nanoparticles.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 14, 2012
Published: December 21, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Ghazal Hajisalem, Aftab Ahmed, Yuanjie Pang, and Reuven Gordon, "Plasmon hybridization for enhanced nonlinear optical response," Opt. Express 20, 29923-29930 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett.88(26), 261104 (2006). [CrossRef]
  2. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006). [CrossRef]
  3. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film,” Phys. Rev. B75(4), 045423–045427 (2007). [CrossRef]
  4. T. Xu, X. Jiao, G.-P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express15(21), 13894–13906 (2007). [CrossRef] [PubMed]
  5. F. Eftekhari and R. Gordon, “Enhanced second harmonic generation form noncentrosymmetric nanohole arrayes in a gold film,” IEEE J. Sel. Top. Quantum Electron.14(6), 1552–1558 (2008). [CrossRef]
  6. T. Xu, X. Jiao, and S. Blair, “Third-harmonic generation from arrays of sub-wavelength metal apertures,” Opt. Express17(26), 23582–23588 (2009). [CrossRef] [PubMed]
  7. G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19(7), 6348–6353 (2011). [CrossRef] [PubMed]
  8. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011). [CrossRef] [PubMed]
  9. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005). [CrossRef] [PubMed]
  10. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanoroes: Large nonlinearities and plasmon saturation,” Phys. Rev. B73(15), 155419 (2006). [CrossRef]
  11. A. K. Singh, D. Senapati, A. Neely, G. Kolawole, C. Hawker, and P. C. Ray, “Nonlinear optical properties of triangular silver nanomaterials,” Chem. Phys. Lett.481(1-3), 94–98 (2009). [CrossRef]
  12. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  13. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express20(12), 12860–12865 (2012). [CrossRef] [PubMed]
  14. H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett.108(21), 217403 (2012). [CrossRef] [PubMed]
  15. G. Volpe, M. Noack, S. S. Aćimović, C. Reinhardt, and R. Quidant, “Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate),” Nano Lett.12(9), 4864–4868 (2012). [CrossRef] [PubMed]
  16. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  17. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011). [CrossRef] [PubMed]
  18. R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc.127(36), 12482–12483 (2005). [CrossRef] [PubMed]
  19. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  20. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402–017405 (2005). [CrossRef] [PubMed]
  21. H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett.12(9), 4997–5002 (2012). [CrossRef] [PubMed]
  22. S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett.109(1), 015502–015506 (2012). [CrossRef] [PubMed]
  23. M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano Lett.12(7), 3778–3782 (2012). [CrossRef] [PubMed]
  24. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012). [CrossRef] [PubMed]
  25. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  26. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  27. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett.9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  29. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  30. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett.4(11), 2209–2213 (2004). [CrossRef]
  31. F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B76(16), 165410 (2007). [CrossRef]
  32. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B76(24), 245417 (2007). [CrossRef]
  33. A. I. Maaroof, J. V. Nygaard, and D. S. Sutherland, “Plasmon hybridization in silver nanoislands as semishells arrays coupled to a thin metallic film,” Plasmonics6(2), 419–425 (2011). [CrossRef]
  34. D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012). [CrossRef] [PubMed]
  35. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett.12(4), 1757–1764 (2012). [CrossRef] [PubMed]
  36. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particles spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010). [CrossRef]
  37. C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012). [CrossRef] [PubMed]
  38. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science294(5548), 1901–1903 (2001). [CrossRef] [PubMed]
  39. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small5(6), 646–664 (2009). [CrossRef] [PubMed]
  40. MicroChem Data Sheet, “NanoTM PMMA and copolymer,” (MicroChem 2001). http://microchem.com/pdf/PMMA_Data_Sheet.pdf .
  41. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  42. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  43. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(32), 4376–4380 (2012). [CrossRef] [PubMed]
  44. A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett.11(4), 1800–1803 (2011). [PubMed]
  45. Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles,” Opt. Express19(2), 1648–1655 (2011). [CrossRef] [PubMed]
  46. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  47. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Status Solidi, B Basic Res.245(1), 9–19 (2008). [CrossRef]
  48. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401–035409 (2009). [CrossRef]
  49. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  50. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  51. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited