OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 1945–1952

Ring-like solitons in plasmonic fiber waveguides composed of metal-dielectric multilayers

Jie-Yun Yan, Lu Li, and Jinghua Xiao  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 1945-1952 (2012)
http://dx.doi.org/10.1364/OE.20.001945


View Full Text Article

Enhanced HTML    Acrobat PDF (4626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design a plasmonic fiber waveguide (PFW) composed of coaxial cylindrical metal-dielectric multilayers in nanoscale, and constitute the corresponding dynamical equations describing the propagation modes in the PFW with the Kerr nonlinearity in the dielectric layers. The physics is connected to the discrete matrix nonlinear Schrödinger equations, from which the highly confined ring-like solitons in scale of subwavelength are found both for the visible lights and the near-infrared lights in the self-defocusing condition. Moreover, when increasing the intensity of the input light the confinement can be further improved due to the cylindrical symmetry of the PFW, which means both the width and the radius of the ring are reduced.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(190.6135) Nonlinear optics : Spatial solitons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 8, 2011
Revised Manuscript: December 18, 2011
Manuscript Accepted: December 21, 2011
Published: January 13, 2012

Citation
Jie-Yun Yan, Lu Li, and Jinghua Xiao, "Ring-like solitons in plasmonic fiber waveguides composed of metal-dielectric multilayers," Opt. Express 20, 1945-1952 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-1945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express, 1922029–22106 (2011). [CrossRef] [PubMed]
  4. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  5. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of suface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003). [CrossRef]
  7. B. Lee, I. M. Lee, S. Kim, D. H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57, 1479–1497 (2010). [CrossRef]
  8. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett.99, 127402 (2007). [CrossRef] [PubMed]
  9. S. M. Vuković, Z. Jakšić, I. V. Shadrivov, and Y. S. Kivshar, “Plasmonic crystal waveguides,” Appl. Phys. A103, 615–617 (2011). [CrossRef]
  10. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B113, 169–176 (2006). [CrossRef]
  11. N. N. Akhmediev, “Nonlinear theory of surface polaritons,” Zhurn. Eksp. Teoret. Fiz.84, 1907–1917 (1983).
  12. V. K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B47, 167–173 (1982). [CrossRef]
  13. F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon polaritons,” Solid State Commun.59, 151–153 (1986). [CrossRef]
  14. A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A35, 1159–1164 (1987). [CrossRef] [PubMed]
  15. D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett.12, 187–189 (1987). [CrossRef] [PubMed]
  16. D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt.27, 229–313 (1989).
  17. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett.99, 153901 (2007). [CrossRef] [PubMed]
  18. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett.104, 106802 (2010). [CrossRef] [PubMed]
  19. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength vortical plasmonic lattice solitons,” Opt. Lett.36, 1179–1181 (2011). [CrossRef] [PubMed]
  20. Y. Kou, F. Ye, and X. Chen, “Multipole plasmonic lattice solitons,” Phys. Rev. A84, 033855 (2011). [CrossRef]
  21. O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the ’phoenix soliton’,” Phys. Rev. Lett.102, 163902 (2009). [CrossRef] [PubMed]
  22. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75, 241402(R) (2007). [CrossRef]
  23. G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B79, 201103 (2009). [CrossRef]
  24. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys.83, 247–305 (2011). [CrossRef]
  25. C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, “Freely suspended nanocomposite membranes as highly-sensitive sensors,” Nat. Mater.3, 721–728 (2004). [CrossRef] [PubMed]
  26. Z. Jakšić, S. M. Vuković, J. Buha, and J. Matovic, “Nanomembrane-based plasmonics,” J. Nanophotonics5, 051818 (2011). [CrossRef]
  27. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007). [CrossRef] [PubMed]
  28. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Comm.1, 143 (2010). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  30. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10, 1–5 (2010). [CrossRef]
  31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scal localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  32. S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol.5, 5–15 (1987). [CrossRef]
  33. S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol.5, 174–183 (1987). [CrossRef]
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  35. S. E. Koonin, Computational Physics (Benjamin/Cummings, Menlo Park, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited