OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2015–2024

Giant optical anisotropy of oblique-aligned ZnO nanowire arrays

Cheng-Ying Chen, Jun-Han Huang, Kun-Yu Lai, Yi-Jun Jen, Chuan-Pu Liu, and Jr-Hau He  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2015-2024 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A combined method of modified oblique-angle deposition and hydrothermal growth was adopted to grow an optically anisotropic nanomaterial based on single crystalline ZnO nanowire arrays (NWAs) with highly oblique angles (75°–85°), exhibiting giant in-plane birefringence and optical polarization degree in emission. The in-plane birefringence of oblique-aligned ZnO NWAs is almost one order of magnitude higher than that of natural quartz. The strong optical anisotropy in emission due to the optical confinement was observed. The oblique-aligned NWAs not only allow important technological applications in passive photonic components but also benefit the development of the optoelectronic devices in polarized light sensing and emission.

© 2012 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:

Original Manuscript: November 21, 2011
Revised Manuscript: December 31, 2011
Manuscript Accepted: December 31, 2011
Published: January 13, 2012

Cheng-Ying Chen, Jun-Han Huang, Kun-Yu Lai, Yi-Jun Jen, Chuan-Pu Liu, and Jr-Hau He, "Giant optical anisotropy of oblique-aligned ZnO nanowire arrays," Opt. Express 20, 2015-2024 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D. P. Yu, “Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires,” Nano Lett. 9(7), 2513–2518 (2009). [CrossRef] [PubMed]
  2. J. H. He, S. T. Ho, T. B. Wu, L. J. Chen, and Z. L. Wang, “Electrical and Photoelectrical Performances of Nano-Photodiode Based on ZnO Nanowires,” Chem. Phys. Lett. 435(1-3), 119–122 (2007). [CrossRef]
  3. M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and J. H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010). [CrossRef] [PubMed]
  4. J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009). [CrossRef] [PubMed]
  5. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  6. J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,” Nanotechnology 20(13), 135701 (2009). [CrossRef] [PubMed]
  7. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009). [CrossRef]
  8. A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. Fréchet, and P. Yang, “Oligo- and polythiophene/ZnO hybrid nanowire solar cells,” Nano Lett. 10(1), 334–340 (2010). [CrossRef] [PubMed]
  9. L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant Efficiency Enhancement of GaAs Solar Cells with Graded Antireflection Layers Based on Syringelike ZnO Nanorod Arrays,” Adv. Energy Mater. 1(4), 506–510 (2011). [CrossRef]
  10. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  11. Y. Q. Bie, Z. M. Liao, P. W. Wang, Y. B. Zhou, X. B. Han, Y. Ye, Q. Zhao, X. S. Wu, L. Dai, J. Xu, L. W. Sang, J. J. Deng, K. Laurent, Y. Leprince-Wang, and D. P. Yu, “Single ZnO nanowire/p-type GaN heterojunctions for photovoltaic devices and UV light-emitting diodes,” Adv. Mater. 22(38), 4284–4287 (2010). [CrossRef] [PubMed]
  12. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001). [CrossRef] [PubMed]
  13. J. Qi, A. M. Belcher, and J. M. White, “Spectroscopy of individual silicon nanowires,” Appl. Phys. Lett. 82(16), 2616–2618 (2003). [CrossRef]
  14. C. X. Shan, Z. Liu, and S. K. Hark, “Photoluminescence polarization in individual CdSe nanowires,” Phys. Rev. B 74(15), 153402 (2006). [CrossRef]
  15. H. Y. Chen, Y. C. Yang, H. W. Lin, S. C. Chang, and S. Gwo, “Polarized photoluminescence from single GaN nanorods: effects of optical confinement,” Opt. Express 16(17), 13465–13475 (2008). [CrossRef] [PubMed]
  16. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003). [CrossRef]
  17. H. Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires,” Nano Lett. 9(10), 3515–3520 (2009). [CrossRef] [PubMed]
  18. H. Pettersson, J. Trägårdh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, “Infrared photodetectors in heterostructure nanowires,” Nano Lett. 6(2), 229–232 (2006). [CrossRef] [PubMed]
  19. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001). [CrossRef] [PubMed]
  20. M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. Krauss, “Compact polarization converter in InP-based material,” Opt. Express 13(13), 5040–5045 (2005). [CrossRef] [PubMed]
  21. M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93(4), 040504 (2004). [CrossRef] [PubMed]
  22. M. L. Markham, J. J. Baumberg, D. C. Smith, X. Li, T. Gabriel, G. S. Attard, and I. Nandhakumar, “Birefringent cadmium–telluride-based metamaterial,” Appl. Phys. Lett. 86(1), 011912 (2005). [CrossRef]
  23. D. Celo, E. Post, M. Summers, T. Smy, M. J. Brett, and J. Albert, “Interferometric sensing platform with dielectric nanostructured thin films,” Opt. Express 17(8), 6655–6664 (2009). [CrossRef] [PubMed]
  24. D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005). [CrossRef] [PubMed]
  25. O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. G. Rivasa, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006). [CrossRef]
  26. O. L. Muskens, S. L. Diedenhofen, M. H. M. van Weert, M. T. Borgström, E. P. A. M. Bakkers, and J. G. Rivas, “Epitaxial growth of aligned semiconductor nanowire metamaterials for photonic applications,” Adv. Funct. Mater. 18(7), 1039–1046 (2008). [CrossRef]
  27. W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: production and optical and electronic properties,” Science 268(5212), 845–847 (1995). [CrossRef] [PubMed]
  28. E. Hecht, Optics, 4th ed., (Addison-Wesley, Boston, 2002; Ch.8).
  29. A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, “Birefringence enhancement in annealed TiO2 thin films,” J. Appl. Phys. 102(1), 013517 (2007). [CrossRef]
  30. S. M. Wang, G. D. Xia, X. Y. Fu, H. B. He, J. D. Shao, and Z. X. Fan, “Preparation and characterization of nanostructured ZrO2 thin films by glancing angle deposition,” Thin Solid Films 515(7-8), 3352–3355 (2007). [CrossRef]
  31. K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18(15), 2147–2153 (2008). [CrossRef]
  32. X. D. Xiao, G. P. Dong, Z. X. Fan, K. Yi, H. B. He, and J. D. Shao, “A facile process to improve linear birefringence of SiO2 thin films,” J. Phys. D Appl. Phys. 42(16), 165305 (2009). [CrossRef]
  33. H. Qi, X. Xiao, H. He, K. Yi, and Z. Fan, “Optical properties and microstructure of Ta2O5 biaxial film,” Appl. Opt. 48(1), 127–133 (2009). [CrossRef] [PubMed]
  34. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38(16), 3621–3625 (1999). [CrossRef] [PubMed]
  35. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28(13), 2466–2482 (1989). [CrossRef] [PubMed]
  36. Q. H. Wu and I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photonics News 5, S9–S10 (1994).
  37. J. Hodgkinson and Q. H. Wu, Birefringent thin films and polarizing elements, (World Scientific Press, 1997).
  38. G. E. Jellison and C. M. Rouleau, “Determination of optical birefringence by using off-axis transmission ellipsometry,” Appl. Opt. 44(16), 3153–3159 (2005). [CrossRef] [PubMed]
  39. G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998). [CrossRef]
  40. H. Huang, C. Y. Chen, Y. F. Lai, Y. I. Shih, Y. C. Lin, J. H. He, and C. P. Liu, “Large-area oblique-aligned ZnO nanowires through a continuously bent columnar buffer: growth, microstructure, and antireflection,” Cryst. Growth Des. 10(8), 3297–3301 (2010). [CrossRef]
  41. B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A, Pure Appl. Opt. 9(5), 457–462 (2007). [CrossRef]
  42. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005). [CrossRef] [PubMed]
  43. C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem 8(6), 782–803 (2007). [CrossRef] [PubMed]
  44. N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, 1st ed., (Wiley, 2006).
  45. P. Lalanne and M. Hutley, Artificial Media Optical Properties - Subwavelength Scale, in Encyclopedia of Optical Engineering, (Dekker, 2003, pp. 62–71)
  46. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, and J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2(10), 1693–1697 (1985). [CrossRef]
  47. H. Wang, “Reflection/transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” J. Mod. Opt. 42(3), 497–505 (1995). [CrossRef]
  48. S. Heavens, “Optical properties of thin films,” Rep. Prog. Phys. 23(1), 1–65 (1960). [CrossRef]
  49. H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008). [CrossRef] [PubMed]
  50. W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids 58(6), 853–857 (1997). [CrossRef]
  51. Y. J. Jen and C. C. Lee, “Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium,” Opt. Lett. 26(4), 190–192 (2001). [CrossRef] [PubMed]
  52. Y. J. Jen, C. C. Lee, and Y. M. Chang, “Reflection property of anisotropic films: comparison of symmetric and asymmetric theories using attenuated total reflection,” J. Opt. A, Pure Appl. Opt. 4(4), 481–484 (2002). [CrossRef]
  53. H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36(Part 1), 6237–6243 (1997). [CrossRef]
  54. G. Rivas, O. L. Muskens, M. T. Borgström, S. L. Diedenhofen, and E. P. A. M. Bakkers, One-Dimensional Nanostructures, Z. M. Wang, ed. (Springer, 2008), Vol. 3, Chap. 6.
  55. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  56. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005). [CrossRef]
  57. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006). [CrossRef]
  58. J. Giblin, V. Protasenko, and M. Kuno, “Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption,” ACS Nano 3(7), 1979–1987 (2009). [CrossRef] [PubMed]
  59. A. A. Zhang, A. Lutich, J. Rodríguez-Fernández, A. Susha, A. Rogach, F. Jäckel, and J. Feldmann, “Optical anisotropy of semiconductor nanowires beyond the electrostatic limit,” Phys. Rev. B 82(15), 155301 (2010). [CrossRef]
  60. P. C. Sercel and K. J. Vahala, “Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects,” Appl. Phys. Lett. 57(6), 545–547 (1990). [CrossRef]
  61. P. C. Sercel and K. J. Vahala, “Polarization dependence of optical absorption and emission in quantum wires,” Phys. Rev. B Condens. Matter 44(11), 5681–5691 (1991). [CrossRef] [PubMed]
  62. Y. Gu, I. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, “Quantum Confinement in ZnO Nanorods,” Appl. Phys. Lett. 85(17), 3833 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited