OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2025–2033

Evaluation of polarization mode dispersion in a telecommunication wavelength selective switch using quantum interferometry

A. Fraine, O. Minaeva, D. S. Simon, R. Egorov, and A. V. Sergienko  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2025-2033 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(260.2030) Physical optics : Dispersion
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: December 2, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: December 16, 2011
Published: January 13, 2012

A. Fraine, O. Minaeva, D. S. Simon, R. Egorov, and A. V. Sergienko, "Evaluation of polarization mode dispersion in a telecommunication wavelength selective switch using quantum interferometry," Opt. Express 20, 2025-2033 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.18, 2044–2046 (1987). [CrossRef]
  2. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B12, 859–862 (1995). [CrossRef]
  3. D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A62, 063808 (2000). [CrossRef]
  4. E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol.104, 1–10 (1999).
  5. A. Fraine, D. S. Simon, O. Minaeva, R. Egorov, and A. V. Sergienko, “Precise evaluation of polarization mode dispersion by separation of even- and odd-order effects in quantum interferometry,” Opt. Express19, 22820–22836 (2011). [CrossRef] [PubMed]
  6. S. Diddams and J. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B13, 1120–1129 (1996). [CrossRef]
  7. Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett.29, 1649–1651 (1993). [CrossRef]
  8. B. L. Heffner, “Accurate, automated measurement of differential group delay dispersion and principal state variation using jones matrix eigenanalysis,” IEEE Photon. Technol. Lett.5, 814–817(1993). [CrossRef]
  9. P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun.Rep. 1, 84–105 (2004). [CrossRef]
  10. P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  11. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B25, 463–480 (2008). [CrossRef]
  12. M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2005). [CrossRef]
  13. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett.29, 2429–2431 (2004). [CrossRef] [PubMed]
  14. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A50, 5122–5133 (1994). [CrossRef] [PubMed]
  15. Capella Intelligent Subsystems Inc., “Capella CR50,” http://www.capellainc.com/products/CR50/index.htm .
  16. G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001). [CrossRef]
  17. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt.42, 6661–6665 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited