OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2045–2052

An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes

Hung-Chun Lin and Yi-Hsin Lin  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2045-2052 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electrically tunable focusing LC lens with a low voltage and simple planar electrodes is demonstrated. The inhomogeneous electric field of the LC lens without any hole-patterned-electrode is generated by using an embedded polymeric layer with a gradient distribution of dielectric constants (or relative permittivity). LC directors in the LC layer experience spatially inhomogeneous voltages even though a single voltage is applied to the planar electrodes. Such a LC lens has a low voltage (~2.6 Vrms) and simple design of electrodes. The gradient distribution of dielectric constants of polymeric layer is discussed and the performance of the LC lens is investigated. The applications of such a LC lens are cell phones, webcam, and pico projectors.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: December 9, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 9, 2012
Published: January 13, 2012

Hung-Chun Lin and Yi-Hsin Lin, "An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes," Opt. Express 20, 2045-2052 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons Ltd. Chichester, 2006), Chap. 12.
  2. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater.12, 234–240 (2011).
  3. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010). [CrossRef]
  4. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 102502 (2010). [CrossRef]
  5. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express19(5), 4714–4721 (2011). [CrossRef] [PubMed]
  6. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun.188(5-6), 291–299 (2001). [CrossRef]
  7. H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett.83(8), 1515–1517 (2003). [CrossRef]
  8. G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006). [CrossRef] [PubMed]
  9. G. Q. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett.89(14), 141120 (2006). [CrossRef]
  10. G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett.90(11), 111105 (2007). [CrossRef]
  11. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010). [CrossRef] [PubMed]
  12. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett.23(13), 992–994 (1998). [CrossRef] [PubMed]
  13. A. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express4(9), 344–352 (1999). [CrossRef] [PubMed]
  14. S. Kotova, M. Kvashnin, M. Rakhmatulin, O. Zayakin, I. Guralnik, N. Klimov, P. Clark, G. Love, A. Naumov, C. Saunter, M. Loktev, G. Vdovin, and L. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express10(22), 1258–1272 (2002). [PubMed]
  15. N. Fraval and J. L. D. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt.49(15), 2778–2783 (2010). [CrossRef] [PubMed]
  16. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979). [CrossRef]
  17. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(5B), L571–L573 (2002). [CrossRef]
  18. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun.250(4-6), 266–273 (2005). [CrossRef]
  19. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett.18(1), 79–81 (2006). [CrossRef]
  20. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008). [CrossRef] [PubMed]
  21. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express16(23), 19277–19284 (2008). [CrossRef] [PubMed]
  22. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys.49(10), 100204 (2010). [CrossRef]
  23. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010). [CrossRef] [PubMed]
  24. H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98(8), 083503 (2011). [CrossRef]
  25. C. J. Chen, K. R. Sarma, and A. Kolosovskaya, “Capacitance–voltage characteristics of liquid crystal displays with periodic interdigital electrodes,” Appl. Phys. Lett.74(1), 147–149 (1999). [CrossRef]
  26. I. C. Khoo and S. T. Wu, Optical and Nonlinear Optics of Liquid Crystals (World Scientific Ltd. London, 1993), Chap. 2.
  27. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett.86(14), 141110 (2005). [CrossRef]
  28. Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys.98(4), 043112 (2005). [CrossRef]
  29. H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett.87(19), 191106 (2005). [CrossRef]
  30. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005). [CrossRef] [PubMed]
  31. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010). [CrossRef]
  32. H. Ren, Y. H. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett.88(6), 061123 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited