OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2062–2072

Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy

Nick Cvetojevic, Nemanja Jovanovic, Jon Lawrence, Michael Withford, and Joss Bland-Hawthorn  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2062-2072 (2012)
http://dx.doi.org/10.1364/OE.20.002062


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the aim of utilizing arrayed waveguide gratings for multi-object spectroscopy in the field of astronomy, we outline several ways in which standard telecommunications grade chips should be modified. In particular, by removing the parabolic-horn taper or multimode interference coupler, and injecting with an optical fiber directly, the resolving power was increased threefold from 2400 ± 200 (spectral resolution of 0.63 ± 0.2 nm) to 7000 ± 700 (0.22 ± 0.02 nm) while attaining a throughput of 77 ± 5%. More importantly, the removal of the taper enabled simultaneous off-axis injection from multiple fibers, significantly increasing the number of spectra that can be obtained at once (i.e. the observing efficiency). Here we report that ~12 fibers can be injected simultaneously within the free spectral range of our device, with a 20% reduction in resolving power for fibers placed at 0.8 mm off-centre.

© 2012 OSA

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(130.3120) Integrated optics : Integrated optics devices
(230.1150) Optical devices : All-optical devices
(300.6190) Spectroscopy : Spectrometers
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Integrated Optics

History
Original Manuscript: September 22, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: December 23, 2011
Published: January 17, 2012

Citation
Nick Cvetojevic, Nemanja Jovanovic, Jon Lawrence, Michael Withford, and Joss Bland-Hawthorn, "Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy," Opt. Express 20, 2062-2072 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2062


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Percival, C. M. Baugh, J. Bland-Hawthorn, T. Bridges, R. Cannon, S. Cole, M. Colless, C. Collins, W. Couch, G. Dalton, R. De Propris, S. P. Driver, G. Efstathiou, R. S. Ellis, C. S. Frenk, K. Glazebrook, C. Jackson, O. Lahav, I. Lewis, S. Lumsden, S. Maddox, S. Moody, P. Norberg, J. A. Peacock, B. A. Peterson, W. Sutherland, and K. Taylor, “The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the universe,” Mon. Not. R. Astron. Soc.327(4), 1297–1306 (2001). [CrossRef]
  2. J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE6269, 62690N, 62690N-14 (2006). [CrossRef]
  3. J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc.404, 232–238 (2010).
  4. F. G. Watson, “A Multi-Fiber Waveguide Spectrograph for Astronomy?” Proc. SPIE2476, 68–74 (1995). [CrossRef]
  5. F. G. Watson, “Waveguide Spectrographs for Astronomy?” Proc. SPIE2871, 1373–1378 (1997). [CrossRef]
  6. J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE7735, 77350N, 77350N-9 (2010). [CrossRef]
  7. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett.26(2), 87–88 (1990). [CrossRef]
  8. N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, “Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy,” Opt. Express17(21), 18643–18650 (2009). [CrossRef] [PubMed]
  9. J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniture astronomical spectrographs using arrayed waveguide gratings: Capabilities and limitations,” Proc. SPIE7739, 773941 (2010).
  10. P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol.20(4), 661–674 (2002). [CrossRef]
  11. M. Smit and C. van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996). [CrossRef]
  12. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett.20(1), 43–45 (1995). [CrossRef] [PubMed]
  13. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett.32(18), 1661–1662 (1996). [CrossRef]
  14. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhei, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett.32(5), 449–451 (1996). [CrossRef]
  15. http://www.jdsu.com/en-us/Optical-Communications/Products/a-z-product-list/Pages/arrayed-waveguide-grating-100-ghz-narrowband-gaussian.aspx
  16. S. Shaklan and F. Roddier, “Coupling starlight into single-mode fiber optics,” Appl. Opt.27(11), 2334–2338 (1988). [CrossRef] [PubMed]
  17. V. Coudé du Foresto, M. Faucherre, N. Hubin, and P. Gitton, “Using single-mode fibers to monitor fast Strehl ratio fluctuations. Application to a 3.6 m telescope corrected by adaptive optics,” Astron. Astrophys.145(2), 305–310 (2000).
  18. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett.30(19), 2545–2547 (2005). [CrossRef] [PubMed]
  19. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express17(3), 1988–1994 (2009). [CrossRef] [PubMed]
  20. D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. Bland-Hawthorn, R. Haynes, and J. Laegsgaard, “Multi-mode to single-mode conversion in a 61 port Photonic Lantern,” Opt. Express18(5), 4673–4678 (2010). [CrossRef] [PubMed]
  21. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express18(8), 8430–8439 (2010). [CrossRef] [PubMed]
  22. S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, J. Bryant, R. Haynes, A. Horton, S. Lee, S. Leon-Saval, H. G. Löhmannsröben, J. Mladenoff, J. O'Byrne, W. Rambold, C. Roth, and C. Trinh, “GNOSIS: an OH suppression unit for near-infrared spectrographs,” Proc. SPIE7735, 773516, 773516-10 (2010). [CrossRef]
  23. S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron.35(8), 783–790 (2003). [CrossRef]
  24. Y. Tanaka, Y. Itoh, K. Aizawa, T. Kurokawa, and H. Tsuda, “Optical spectrum analyzer based on arrayed waveguide grating for high-speed optical communication systems,” IEEE Photon. Technol. Lett.17(2), 432–434 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited