OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2081–2095

Wavelet analysis for single molecule localization microscopy

I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, and J.B. Sibarita  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2081-2095 (2012)
http://dx.doi.org/10.1364/OE.20.002081


View Full Text Article

Acrobat PDF (3842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 105 single molecule detections to reconstruct a single image. We hereby present an algorithm based on image wavelet segmentation and single particle centroid determination, and compare its performance with the commonly used Gaussian fitting of the point spread function. We performed realistic simulations at different signal-to-noise ratios and particle densities and show that the calculation time using the wavelet approach can be more than one order of magnitude faster than that of Gaussian fitting without a significant degradation of the localization accuracy, from 1 nm to 4 nm in our range of study. We propose a simulation-based estimate of the resolution of an experimental single molecule acquisition.

© 2012 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(100.7410) Image processing : Wavelets
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Image Processing

History
Original Manuscript: October 3, 2011
Revised Manuscript: December 22, 2011
Manuscript Accepted: January 2, 2012
Published: January 17, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, and J.B. Sibarita, "Wavelet analysis for single molecule localization microscopy," Opt. Express 20, 2081-2095 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2081


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. J. Lord, H.-L. D. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem.82(6), 2192–2203 (2010). [CrossRef] [PubMed]
  2. M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science302(5644), 442–445 (2003). [CrossRef] [PubMed]
  3. A. Triller and D. Choquet, “New concepts in synaptic biology derived from single-molecule imaging,” Neuron59(3), 359–374 (2008). [CrossRef] [PubMed]
  4. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003). [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  8. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5(11), 943–945 (2008). [CrossRef] [PubMed]
  9. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009). [CrossRef] [PubMed]
  10. R. Ober and S. Ram, “Localization accuracy in single-molecule microscopy,” Biophys. J. (2004).
  11. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001). [CrossRef] [PubMed]
  12. A. V. Abraham, S. Ram, J. Chao, E. S. Ward, and R. J. Ober, “Quantitative study of single molecule location estimation techniques,” Opt. Express17(26), 23352–23373 (2009). [CrossRef] [PubMed]
  13. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7(5), 373–375 (2010). [CrossRef] [PubMed]
  14. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010). [CrossRef] [PubMed]
  15. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. van de Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc. 237, 12–22 (n.d.).
  16. P. N. Hedde, J. Fuchs, F. Oswald, J. Wiedenmann, and G. U. Nienhaus, “Online image analysis software for photoactivation localization microscopy,” Nat. Methods6(10), 689–690 (2009). [CrossRef] [PubMed]
  17. S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories with photoactivated localization microscopy,” Nat. Methods5(2), 155–157 (2008). [CrossRef] [PubMed]
  18. M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian, “A real-time algorithm for signal analysis with the help of the wavelet transform,” in Proceedings of the International Conference Wavelets. Time-Frequency Methods and Phase Space, J. M. Combes, A. Grossman, and P. Tchamitchian, eds. (Springer-Verlag, 1987) page 286.
  19. M. Unser and A. Aldroubi, “Polynomial splines and wavelets: a signal processing perspective,” in Wavelets: A Tutorial in Theory and Applications (Academic Press, 1992).
  20. J. Starck and F. Murtagh, Astronomical Image and Data Analysis (Springer, 2006).
  21. J. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: A review,” Publ. Astron. Soc. Pac.114(800), 1051–1069 (2002). [CrossRef]
  22. D. Donoho and I. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc.90(432), 1200–1224 (1995). [CrossRef]
  23. S. J. Holden, S. Uphoff, and A. N. Kapanidis, “DAOSTORM: an algorithm for high- density super-resolution microscopy,” Nat. Methods8(4), 279–280 (2011). [CrossRef] [PubMed]
  24. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011). [CrossRef] [PubMed]
  25. S. Wolter, U. Endesfelder, S. van de Linde, M. Heilemann, and M. Sauer, “Measuring localization performance of super-resolution algorithms on very active samples,” Opt. Express19(8), 7020–7033 (2011). [CrossRef] [PubMed]
  26. L. Vincent and P. Soille, “Watersheds in digital spaces - an efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell.13(6), 583–598 (1991). [CrossRef]
  27. A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008). [CrossRef] [PubMed]
  28. P. Křížek, I. Raška, and G. M. Hagen, “Minimizing detection errors in single molecule localization microscopy,” Opt. Express19(4), 3226–3235 (2011). [CrossRef] [PubMed]
  29. P. Sprawls, Physical Principles of Medical Imaging, 2nd ed. (Medical Physics Publishing Corporation, 1995), p. 656.
  30. I. Izeddin, C. G. Specht, M. Lelek, X. Darzacq, A. Triller, C. Zimmer, and M. Dahan, “Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe,” PLoS ONE6(1), e15611 (2011). [CrossRef] [PubMed]
  31. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem.61(1), 345–367 (2010). [CrossRef] [PubMed]
  32. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt.46(10), 1819–1829 (2007). [CrossRef] [PubMed]
  33. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  34. F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photoactivatable mCherry for high-resolution two-color fluorescence microscopy,” Nat. Methods6(2), 153–159 (2009). [CrossRef] [PubMed]
  35. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011). [CrossRef] [PubMed]
  36. U. Kubitscheck, O. Kückmann, T. Kues, and R. Peters, “Imaging and tracking of single GFP molecules in solution,” Biophys. J.78(4), 2170–2179 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited