OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2124–2135

Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals

Pao T. Lin, Michiel Vanhoutte, Neil S. Patel, Vivek Singh, Juejun Hu, Yan Cai, Rodolfo Camacho-Aguilera, Jurgen Michel, Lionel C. Kimerling, and Anu Agarwal  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2124-2135 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband and anisotropic light emission from rare-earth doped tellurite thin films is demonstrated using Er3+-TeO2 photonic crystals (PhCs). By adjusting the PhC parameters, photoluminescent light can be efficiently coupled into vertical surface emission or lateral waveguide propagation modes. Because of the flexibility of light projection direction, Er3+-TeO2 is a potential broadband light source for integration with three-dimensional photonic circuits and on-chip biochemical sensors.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.5690) Materials : Rare-earth-doped materials
(240.0310) Optics at surfaces : Thin films
(250.5230) Optoelectronics : Photoluminescence
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 1, 2011
Revised Manuscript: December 25, 2011
Manuscript Accepted: January 6, 2012
Published: January 17, 2012

Pao T. Lin, Michiel Vanhoutte, Neil S. Patel, Vivek Singh, Juejun Hu, Yan Cai, Rodolfo Camacho-Aguilera, Jurgen Michel, Lionel C. Kimerling, and Anu Agarwal, "Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals," Opt. Express 20, 2124-2135 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.)19(12), 1582–1588 (2007). [CrossRef]
  2. J. H. Kim and P. H. Holloway, “Near-infrared-electroluminescent light-emitting planar optical sources based on gallium nitride doped with rare earths,” Adv. Mater. (Deerfield Beach Fla.)17(1), 91–96 (2005). [CrossRef]
  3. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5,” Opt. Express18(8), 7724–7731 (2010). [CrossRef] [PubMed]
  4. M. T. Carlson, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett.11(3), 1061–1069 (2011). [CrossRef] [PubMed]
  5. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc.85(6), 1391–1395 (2002). [CrossRef]
  6. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3(3), 187–203 (1994). [CrossRef]
  7. I. Jlassi, H. Elhouichet, and M. Ferid, “Thermal and optical properties of tellurite glasses doped erbium,” J. Mater. Sci.46(3), 806–812 (2011). [CrossRef]
  8. S. Shen, B. Richards, and A. Jha, “Enhancement in pump inversion efficiency at 980 nm in Er3+, Er3+/Eu3++ and Er3+/Ce3+ doped tellurite glass fibers,” Opt. Express14(12), 5050–5054 (2006). [CrossRef] [PubMed]
  9. M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express17(18), 15578–15584 (2009). [CrossRef] [PubMed]
  10. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn.116(1358), 1040–1051 (2008). [CrossRef]
  11. M. Pollnau and S. D. Jackson, “Mid-infrared fiber lasers solid-state mid-infrared laser sources,” Top. Appl. Phys.89, 219–253 (2003).
  12. G. S. Murugan and Y. Ohishi, “TeO2–BaO–SrO–Nb2O5 glasses: a new glass system for waveguide devices applications,” J. Non-Cryst. Solids341(1-3), 86–92 (2004). [CrossRef]
  13. F. D’Amore, M. Di Giulio, S. M. Pietralunga, A. Zappettini, L. Nasi, V. Rigato, and M. Martinelli, “Sputtered stoichiometric teo2 glass films: dispersion of linear and nonlinear optical properties,” J. Appl. Phys.94(3), 1654 (2003). [CrossRef]
  14. N. Dewan, V. Gupta, K. Sreenivas, and R. S. Katiyar, “Growth of amorphous TeOx (2 ≤ x ≤ 3) thin film by radio frequency sputtering,” J. Appl. Phys.101(8), 084910 (2007). [CrossRef]
  15. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. J. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” Appl. Phys. (Berl.)108, 013506 (2010).
  16. D. Zhao, S.-J. Seo, and B.-S. Bae, “Full-color mesophase silicate thin film phosphors incorporated with rare earth ions and photosensitizers,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3473–3479 (2007). [CrossRef]
  17. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett.75(8), 1036 (1999). [CrossRef]
  18. B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, “Nanobox array for silicon-on-insulator luminescence enhancement at room temperature,” Appl. Phys. Lett.88(13), 133120 (2006). [CrossRef]
  19. B. Cluzel, V. Calvo, T. Charvolin, E. Picard, P. Noé, and E. Hadji, “Single-mode room-temperature emission with a silicon rod lattice,” Appl. Phys. Lett.89(20), 201111 (2006). [CrossRef]
  20. M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83(13), 2542 (2003). [CrossRef]
  21. K.-Y. Ko, Y. K. Lee, Y. R. Do, and Y. D. Huh, “Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter-deposited Y2O3:Eu3+ thin-film phosphors,” J. Appl. Phys.102(1), 013509 (2007). [CrossRef]
  22. K.-Y. Ko, Y. K. Lee, H. K. Park, Y.-C. Kim, and Y. R. Do, “The variation of the enhanced photoluminescence efficiency of Y2O3:Eu3+ films with the thickness to the photonic crystal layer,” Opt. Express16(8), 5689–5696 (2008). [CrossRef] [PubMed]
  23. T. Liu and R. Panepucci, “Confined waveguide modes in slot photonic crystal slab,” Opt. Express15(7), 4304–4309 (2007). [CrossRef] [PubMed]
  24. C. E. Chryssou, “WDM systems in the C-band using Er3+-doped tellurite optical waveguide amplifiers,” Fiber Int. Opt.20(6), 581–590 (2001). [CrossRef]
  25. C. E. Chryssou, F. Di Pasquale, and C. W. Pitt, “Er3+-doped channel optical waveguide amplifiers for WDM systems: a comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron.6(1), 114–121 (2000). [CrossRef]
  26. G. N. Conti, S. Berneschi, M. Bettinelli, M. Brenci, B. Chen, S. Pelli, A. Speghini, and G. C. Righini, “Rare-earth doped tungsten tellurite glasses and waveguides: fabrication and characterization,” J. Non-Cryst. Solids345, 343–348 (2004). [CrossRef]
  27. K. T. Vu and S. J. Madden, “Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon,” J. Vac. Sci. Technol. A29(1), 011023 (2011). [CrossRef]
  28. R. D. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC, 2007).
  29. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express14(25), 12145–12150 (2006). [CrossRef] [PubMed]
  30. S. Sakida, T. Nanba, and Y. Miura, “Refractive-index profiles and propagation losses of Er3+-doped tungsten tellurite glass waveguide by Ag+–Na+ Ion-exchange,” Mater. Lett.60(28), 3413–3415 (2006). [CrossRef]
  31. S. Sakida, T. Nanba, and Y. Miura, “Optical properties of Er3+-doped tungsten tellurite glass waveguides by Ag+–Na+ ion-exchange,” Opt. Mater.30(4), 586–593 (2007). [CrossRef]
  32. S. K. Sundaram, C. B. Schaffer, and E. Mazur, “Microexplosions in tellurite glasses,” Appl. Phys., A Mater. Sci. Process.76(3), 379–384 (2003). [CrossRef]
  33. Y. Tokuda, M. Saito, M. Takahashi, K. Yamada, W. Watanabe, K. Itoh, and T. Yoko, “Waveguide formation in niobium tellurite glases by pico- and femtosecond laser pulses,” J. Non-Cryst. Solids326–327, 472–475 (2003). [CrossRef]
  34. K. Vu and S. Madden, “Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express18(18), 19192–19200 (2010). [CrossRef] [PubMed]
  35. S. M. Pietralunga, M. Lanata, M. Ferè, D. Piccinin, G. Cusmai, M. Torregiani, and M. Martinelli, “High-contrast waveguides in sputtered pure TeO2 glass thin films,” Opt. Express16(26), 21662–21670 (2008). [CrossRef] [PubMed]
  36. G. N. Conti, V. K. Tikhomirov, M. Bettinelli, S. Berneschi, M. Brenci, B. Chen, S. Pelli, A. Speghini, A. B. Seddon, and G. C. Righini, “Characterization of ion-exchanged waveguides in tungsten tellurite and zinc tellurite Er3+-doped glasses,” Opt. Eng.42(10), 2805 (2003). [CrossRef]
  37. V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, “photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons,” Opt. Express15(12), 7190–7195 (2007). [CrossRef] [PubMed]
  38. A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater.5(3), 179–184 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited