OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2149–2162

Rigorous solution for optical diffraction of a sub-wavelength real-metal slit

Yann Gravel and Yunlong Sheng  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2149-2162 (2012)
http://dx.doi.org/10.1364/OE.20.002149


View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rigorous closed-form solution of the Sommerfeld integral for the optical scattering of a metal sub-wavelength slit. The two-dimensional (2D) field solution consists of the Surface Plasmon Polariton (SPP) mode at the metal surface and the 2D scattered field, which is the cylindrical harmonic of first order emitted by the electrical dipole and convolved with the 1D transient SPP along the interface. The creeping wave or quasi-cylindrical wave detected in the previous experiment is not an extra evanescent surface wave, but is the asymptotic behavior of the 2D scattered field at the proximity of the slit. Furthermore, our solution predicts a strong resonant enhancement of the scattered field at the proximity of the slit, depending on the materials and wavelength.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 28, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 18, 2011
Published: January 17, 2012

Citation
Yann Gravel and Yunlong Sheng, "Rigorous solution for optical diffraction of a sub-wavelength real-metal slit," Opt. Express 20, 2149-2162 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  4. L. Matrin-Moreno, F. J. Gracia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through sub-wavelength hole arrays,” Phys. Rev. Lett.86, 1112–1117 (2001).
  5. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  6. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403–057407 (2002). [CrossRef] [PubMed]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  8. B. Ung and Y. Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express15(3), 1182–1190 (2007). [CrossRef] [PubMed]
  9. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt.34(17), 3055–3063 (1995). [CrossRef] [PubMed]
  10. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94(5), 053901 (2005). [CrossRef] [PubMed]
  11. G. Gay, O. Alloschery, B. Viaris De Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.2(4), 262–267 (2006). [CrossRef]
  12. G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, C. O’Dwyer, M. Sukharev, and T. Seideman, “Surface quality and surface waves on subwavelength-structured silver films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016612 (2007). [CrossRef] [PubMed]
  13. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006). [CrossRef]
  14. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009). [CrossRef]
  15. A. N. Sommerfeld, “Propagation of waves in wireless telegraphy,” Ann. Phys. (Leipzig)28, 665–737 (1909).
  16. J. Zenneck, “Propagation of plane EM waves along a plane conducting surface,” Ann. Phys. (Leipzig)23, 846–866 (1907).
  17. K. A. Norton, “The propagation of radio waves over the surface of the earth and in the upper atmosphere,” Proc. IRE24(10), 1367–1387 (1936). [CrossRef]
  18. R. E. Collin, “Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century controversies,” IEEE Antennas Propagat. Mag.46(2), 64–79 (2004). [CrossRef]
  19. B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited,” Opt. Express16(12), 9073–9086 (2008). [CrossRef] [PubMed]
  20. A. Y. Nikitin, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martín-Moreno, “In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region,” New J. Phys.11(12), 123020 (2009). [CrossRef]
  21. Y. Gravel and Y. Sheng, “Rigorous solution for the transient Surface Plasmon Polariton launched by subwavelength slit scattering,” Opt. Express16(26), 21903–21913 (2008). [CrossRef] [PubMed]
  22. G. Lévêque, O. J. F. Martin, and J. Weiner, “Transient behaviour of surface plasmon polaritons scattered at a sub-wavelength groove,” Phys. Rev. B76(15), 155418 (2007). [CrossRef]
  23. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  25. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  26. R. W. P. King, M. Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration and Remote Sensing (Springer-Verlag, New York, 1992).
  27. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  28. L. Chen, J. T. Robinson, and M. Lipson, “Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface,” Opt. Express14(26), 12629–12636 (2006). [CrossRef] [PubMed]
  29. I. S. Gradshteyn and I. m. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited