OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2206–2219

Electromagnetic imaging of separable obstacle problem

Xiuzhu Ye, Rencheng Song, Krishna Agarwal, and Xudong Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2206-2219 (2012)
http://dx.doi.org/10.1364/OE.20.002206


View Full Text Article

Enhanced HTML    Acrobat PDF (2193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The practical problem of imaging scatterers that are separable from the known obstacles is addressed. Using such a priori information, the obstacle is regarded as a known scatterer rather than part of the background and can be excluded from the retrieving process by reformulating the cost function. As a result, the proposed method transforms the problem into an inverse scattering problem with homogeneous background, and avoids the computationally intensive calculation of Green’s function for inhomogeneous background (bases of the physical model of the problem). Meanwhile, the factors that influence the imaging quality for such kind of problem are also analyzed. Various difficult numerical examples are presented to show the good performance of our method. In addition, a data set of scattering experiments from the Institut Fresnel is tested to verify the validity of our method.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:
Microscopy

History
Original Manuscript: November 14, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: January 10, 2012
Published: January 17, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Xiuzhu Ye, Rencheng Song, Krishna Agarwal, and Xudong Chen, "Electromagnetic imaging of separable obstacle problem," Opt. Express 20, 2206-2219 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express14(5), 2037–2046 (2006). [CrossRef] [PubMed]
  2. P. C. Chaumet, K. Belkebir, and R. Lencrerot, “Three-dimensional optical imaging in layered media,” Opt. Express14(8), 3415–3426 (2006). [CrossRef] [PubMed]
  3. R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn.36(4), 1741–1744 (2000). [CrossRef]
  4. S. M. Ali, N. K. Nikolova, and M. H. Bakr, “Non-destructive testing and evaluation utilizing frequency-domain EM modeling,” in Proceedings of the Second IASTED International Conference on Antennas, Radar, and Wave Propagation (Banff, CANADA, 2005), pp. 29–34.
  5. S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag.49(12), 1812–1820 (2001). [CrossRef]
  6. S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag.52(6), 1386–1397 (2004). [CrossRef]
  7. A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas.55(1), 240–247 (2006). [CrossRef]
  8. M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag.55(1), 205–215 (2007). [CrossRef]
  9. M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens.47(5), 1289–1296 (2009). [CrossRef]
  10. L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens.43(12), 2793–2798 (2005). [CrossRef]
  11. A. J. Devaney and R. P. Porter, “Holography and the inverse source problem. Part II: Inhomogeneous media,” J. Opt. Soc. Am. A2(11), 2006–2012 (1985). [CrossRef]
  12. J. M. Tualle, J. Prat, E. Tinet, and S. Avrillier, “Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A17(11), 2046–2055 (2000). [CrossRef] [PubMed]
  13. S. He, L. Zhuang, F. Zhang, W. Hu, and G. Zhu, “Investigation of range profiles from buried 3-D object based on the EM simulation,” Opt. Express19(13), 12291–12304 (2011). [CrossRef] [PubMed]
  14. S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag.51(10), 2878–2884 (2003). [CrossRef]
  15. X. Chen, “Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium,” Inverse Probl.26(7), 074007 (2010). [CrossRef]
  16. A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl.24(6), 065004 (2008). [CrossRef]
  17. X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl.27(5), 055011 (2011). [CrossRef]
  18. A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett.53(12), 2834–2838 (2011). [CrossRef]
  19. X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res.100, 119–128 (2010). [CrossRef]
  20. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech.51(4), 1162–1173 (2003). [CrossRef]
  21. M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens.44(2), 298–312 (2006). [CrossRef]
  22. M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens.47(5), 1467–1481 (2009). [CrossRef]
  23. A. Y. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Trans. Antenn. Propag.52(5), 1223–1229 (2004). [CrossRef]
  24. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl.25(12), 123003 (2009). [CrossRef]
  25. X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A26(4), 1022–1026 (2009). [CrossRef] [PubMed]
  26. J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express19(11), 10698–10706 (2011). [CrossRef] [PubMed]
  27. J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl.21(6), S117–S130 (2005). [CrossRef]
  28. O. M. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A18(8), 1832–1843 (2001). [CrossRef] [PubMed]
  29. M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens.48(3), 1186–1198 (2010). [CrossRef]
  30. R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens.8(6), 1021–1025 (2011). [CrossRef]
  31. T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens.44(1), 3–9 (2006). [CrossRef]
  32. W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett.5(12), 439–441 (1995). [CrossRef]
  33. J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag.48(6), 860–867 (2000). [CrossRef]
  34. W. C. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  35. J. A. Kong, Electromagnetic Wave Theory (EMW. 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited