OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2310–2318

Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state

B. Pasenow, J. V. Moloney, S. W. Koch, S. H. Chen, A. Becker, and A. Jaroń-Becker  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2310-2318 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (10903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(260.5210) Physical optics : Photoionization
(320.0320) Ultrafast optics : Ultrafast optics
(350.5400) Other areas of optics : Plasmas

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 3, 2011
Revised Manuscript: December 20, 2011
Manuscript Accepted: December 23, 2011
Published: January 18, 2012

B. Pasenow, J. V. Moloney, S. W. Koch, S. H. Chen, A. Becker, and A. Jaroń-Becker, "Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state," Opt. Express 20, 2310-2318 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4, 822–832 (2010). [CrossRef]
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007). [CrossRef]
  3. Y. Huismans, A. Rouzee, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lepine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Y. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science331, 61–64 (2011). [CrossRef]
  4. D. G. Arbo, S. Yoshida, E. Persson, K. I. Dimitriou, and J. Burgdorfer, “Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold,” Phys. Rev. Lett.96, 143003 (2006). [CrossRef] [PubMed]
  5. A. Rudenko, K. Zrost, C. D. Schroter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for single ionization of atoms in the tunnelling regime,” J. Phys. B37, L407–L413 (2004). [CrossRef]
  6. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Butterworth-Heinemann, 1981)
  7. Z. Sun, J. Chen, and W. Rudolph, “Determination of the transient electron temperature in a femtosecond-laser-induced air plasma filament,” Phys. Rev. E83, 046408 (2011). [CrossRef]
  8. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181, 123–127 (2000). [CrossRef]
  9. Y. H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105, 215005 (2010). [CrossRef]
  10. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following 6-photon ionization of xeon atoms,” Phys. Rev. Lett.42, 1127–1130 (1979). [CrossRef]
  11. M. Wickenhauser, X. M. Tong, D. G. Arbo, J. Burgdoerfer, and C. D. Lin, “Signatures of tunneling and multiphoton ionization in the electron-momentum distributions of atoms by intense few-cycle laser pulses,” Phys. Rev. A74, 041402 (2006). [CrossRef]
  12. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature414, 182–184 (2001). [CrossRef] [PubMed]
  13. A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” PRL102, 115005 (2009). [CrossRef]
  14. see, e.g. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed. (World Scientific Publ., 2009), Chap. 8.
  15. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag, 1989). [CrossRef]
  16. see, e.g., R. Brunetti, C. Jacoboni, A. Matulionis, and V. Dienys, “Effect of interparticle collisions on energy relaxation of carriers in semiconductors,” Physica B134, 369–373 (1985) for self-scattering method for el.-el. Coulomb scattering. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited