OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2335–2345

Two-dimensional inside-out Eaton Lens: Design technique and TM-polarized wave properties

Yong Zeng and Douglas H. Werner  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2335-2345 (2012)
http://dx.doi.org/10.1364/OE.20.002335


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we perform a theoretical and numerical study of two-dimensional inside-out Eaton lenses under transverse-magnetic-polarized excitation. We present one example design and test its performance by utilizing full-wave Maxwell solvers. With the help of the WKB approximation, we further investigate the finite-wavelength effect analytically and demonstrate one necessary condition for perfect imaging at the level of wave optics, i.e. imaging with unlimited resolution, by the lens.

© 2012 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

History
Original Manuscript: November 9, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: January 3, 2012
Published: January 18, 2012

Citation
Yong Zeng and Douglas H. Werner, "Two-dimensional inside-out Eaton Lens: Design technique and TM-polarized wave properties," Opt. Express 20, 2335-2345 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).
  2. J. C. Maxwell, “Solutions of problems,” Camb. Dublin Math. J.8, 188 (1854).
  3. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, 1964).
  4. J. E. Eaton, “On spherically symmetric lenses,” Trans. IRE Antennas Propag.4, 66–71 (1952).
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt.53, 69–152 (2009).
  6. U. Leonhardt and T. G. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).
  7. J. C. Miñano, “Perfect imaging in a homogeneous three-dimensional region,” Opt. Express14, 9627–9635 (2006). [PubMed]
  8. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Materials8, 639–642 (2009).
  9. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Materials9, 129–132 (2010).
  10. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett.35, 3396–3398 (2010). [PubMed]
  11. D. R. Smith, Y. Urzhumov, N. B. Kundtz, and N. I. Landy, “Enhancing imaging systems using transformation optics,” Opt. Express18, 21238–21251 (2010). [PubMed]
  12. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnology6, 151–155 (2011).
  13. U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys.11, 093040 (2009).
  14. A. Di Falco, S. C. Kehr, and U. Leonhardt, “Luneburg lens in silicon photonics,” Opt. Express19, 5156–5162 (2011). [PubMed]
  15. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [PubMed]
  16. A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5, 357–359 (2011).
  17. J. A. Lock, “Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory,” J. Opt. Soc. Am. A25, 2980–2990 (2008).
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [PubMed]
  19. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).
  20. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [PubMed]
  21. U. Leonhardt, “Optical conformal mapping,” Science312, 1777–1780 (2006). [PubMed]
  22. D.-H. Kwon and D. H. Werner, “Transformation electromagnetics: An overview of the theory and its application,” IEEE Antennas Prop. Mag.52, 24–45 (2010).
  23. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Materials9, 387–396 (2010).
  24. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [PubMed]
  25. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).
  26. J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley, 1994).
  27. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 2004).
  28. R. H. Good, “The generalization of the WKB method to radial wave equations,” Phys. Rev.90, 131–137 (1953).
  29. B. Durand and L. Durand, “Improved WKB radial wave functions in several bases,” Phys. Rev. A33, 2887–2898 (1986). [PubMed]
  30. R. E. Langer, “On the connection formulas and the solutions of the wave equation,” Phys. Rev.51, 669–676 (1937).
  31. Y. Zeng, Q. Wu, and D. H. Werner, “Electrostatic theory for designing lossless negative permittivity metamaterials,” Opt. Lett.35, 1431–1433 (2010). [PubMed]
  32. COMSOL, www.comsol.com .
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998).
  34. Y. Zeng, J. Liu, and D. H. Werner, “General properties of two-dimensional conformal transformations in electrostatics,” Opt. Express19, 20035–20047 (2011). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited