OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2435–2444

Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications

Jérémie Thomas, Mikhaël Myara, Laurent Troussellier, Ekaterina Burov, Alain Pastouret, David Boivin, Gilles Mélin, Olivier Gilard, Michel Sotom, and Philippe Signoret  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2435-2444 (2012)
http://dx.doi.org/10.1364/OE.20.002435


View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

© 2012 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(350.5610) Other areas of optics : Radiation
(350.6090) Other areas of optics : Space optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 11, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 4, 2012
Published: January 19, 2012

Citation
Jérémie Thomas, Mikhaël Myara, Laurent Troussellier, Ekaterina Burov, Alain Pastouret, David Boivin, Gilles Mélin, Olivier Gilard, Michel Sotom, and Philippe Signoret, "Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications," Opt. Express 20, 2435-2444 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Caplan, M. Stevens, and B. Robinson, “Free-space laser communications: global communications and beyond,” in European Conference on Optical Communication (2009).
  2. L. Troussellier, C. Chluda, M. Myara, J. Boch, L. Dusseau, P. Signoret, O. Gilard, M. Sotom, and J.-P. David, “Dose rate effect on aluminium-codoped erbium fibers,” in Radiation Effects on Insulators (2007).
  3. H. Henschel, O. Köhn, H. U. Schmidt, J. Krichhof, and S. Unger, “Radiation-induced loss of rare earth doped silica fibres,” IEEE Trans. Nucl. Sci.45(3), 1552–1557 (1998).
  4. A. Gusarov, M. V. Uffelen, M. Hotoleanu, M. Thienpont, and F. Berghmans, “Radiation Sensitivity of EDFAs Based on Highly Er-Doped Fibers,” J. Lightwave Technol.27(11), 1540–1545 (2009).
  5. B. Brichard, A. L. Tomashuk, V. A. Bogatyrjov, A. F. Fernandez, S. N. Klyamkin, S. Girard, and F. Berghmans, “Reduction of the radiation-induced absorption in hydrogenated pure silica core fibres irradiated in situ with gamma-rays,” J. Non-Cryst. Solids353, 466–472 (2007).
  6. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
  7. E. Modone and G. Roba, “OH reduction in preforms by isotope exchange,” Electron. Lett.17(21), 815–817 (1981).
  8. B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci.22(6), 2462 –2467 (1975).
  9. M. Vivona, S. Girard, C. Marcandella, E. Pinsard, A. Laurent, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Durcissement aux radiations de fibres optiques dopées terres rares et d’amplificateurs à fibres optiques,” in Journées Nationales d’Optique Guidée (2010).
  10. P. Myslinski, “Effects of concentration on the performance of Erbium-Doped fiber amplifiers,” J. Lightwave Technol.15(1), 112–120 (1997).
  11. D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc. SPIE, 7580, 75802B–1 (2010).
  12. A. Pastouret, C. Gonnet, and E. Burov, “Amplifying optical fiber and production method,” (2010). Patent US 2010135627.
  13. A. Pastouret, E. Burov, D. Boivin, C. Collet, and O. Cavani, “Amplifying optical fiber and method of manufacturing,” (2010). Patent US 2010118388.
  14. E. Régnier, A. Pastouret, and E. Burov, “Ionizing radiation-resistant optical fiber amplifier,” (2010). Patent US2010142033.
  15. S. Girard, B. Tortech, E. Régnier, M. V. Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyflet, J. A. Felix, E. Blackmore, and H. Thienpont, “Proton and gamma-induced effects on erbium-doped optical Fibers,” IEEE Trans. Nucl. Sci.54(6), 2426–2434 (2007).
  16. E. Régnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Radiation-induced attenuation at IR wavelength in silica based optical fibers,” in Radiation Effects on Components and Systems (2006).
  17. J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sotom, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fbers,” in International Conference on Space Optics (2010).
  18. B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effet in erbium-doped fibers for space gyroscopes,” in Proc. of the 16th International Conference on Optical Fiber Sensors (2003).
  19. D. Derickson, Fiber optic test and measurements, ed. (Prentice-Hall, 1998).
  20. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol.6, 122–154 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited