OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2445–2451

Sub-Rayleigh optical vortex coronagraphy

E. Mari, F. Tamburini, G. A. Swartzlander, Jr., A. Bianchini, C. Barbieri, F. Romanato, and B. Thidé  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2445-2451 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new optical vortex coronagraph(OVC) method to determine the angular distance between two sources when the separation is sub-Rayleigh. We have found a direct relationship between the position of the minima and the source angular separation. A priori knowledge about the location of the two sources is not required. The superresolution capabilities of an OVC, equipped with an = 2 N-step spiral phase plate in its optical path, were investigated numerically. The results of these investigations show that a fraction of the light, increasing with N, from the secondary source can be detected with a sub-Rayleigh resolution of at least 0.1 λ/D.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.6640) Image processing : Superresolution
(350.1260) Other areas of optics : Astronomical optics
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Image Processing

Original Manuscript: November 10, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: December 26, 2011
Published: January 19, 2012

E. Mari, F. Tamburini, G. A. Swartzlander, A. Bianchini, C. Barbieri, F. Romanato, and B. Thidé, "Sub-Rayleigh optical vortex coronagraphy," Opt. Express 20, 2445-2451 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Quirrenbach, “Coronographic Methods for the Detection of Terrestrial Planets,” Arxiv preprint astroph/0502254 (2005).
  2. F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astr. Soc. Pacif.109, 815–820 (1997). [CrossRef]
  3. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The Four-Quadrant Phase-Mask Coronagraph. I. Principle,” Publ. Astr. Soc. Pacif.112, 1479–1486 (2000). [CrossRef]
  4. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: Laboratory results and first light at Palomar Observatory,” Astrophys. J.709, 53–57 (2010). [CrossRef]
  5. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett.30, 3308–3310 (2005). [CrossRef]
  6. J. Lee, G. Foo, E. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph.” Phys. Rev. Lett.97(5), 053901 (2006). [CrossRef] [PubMed]
  7. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature464(7291), 1018–1020 (2010). [CrossRef] [PubMed]
  8. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun.73(5), 403–408 (1989). [CrossRef]
  9. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  10. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett.97(16), 163903 (2006). [CrossRef] [PubMed]
  11. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J.633, 1191–1200 (2005). [CrossRef]
  12. G. A. Swartzlander, “The optical vortex coronagraph,” J. Opt. A Pure Appl. Opt.11, 094022 (2009). [CrossRef]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994). [CrossRef]
  14. E. Mari, G. Anzolin, F. Tamburini, M. Prasciolu, G. Umbriaco, A. Bianchini, C. Barbieri, and F. Romanato, “Fabrication and testing of l = 2 optical vortex phase masks for coronography,” Opt. Express18, 2339–2344 (2010). [CrossRef] [PubMed]
  15. E. Hecht, Optics, 4th ed. (Addison-Wesley Publishing Company, 2001).
  16. H. Müller, S.-W. Chiow, Q. Long, C. Vo, and S. Chu, “Active sub-Rayleigh alignment of parallel or antiparallel laser beams,” Opt. Lett.30, 3323–3325 (2005). [CrossRef]
  17. G. A. Swartzlander, “Peering into darkness with a vortex spatial filter,” Opt. Lett.26, 497–499 (2001). [CrossRef]
  18. M. Pitchumani, H. Hockel, W. Mohammed, and E. Johnson, “Additive lithography for fabrication of diffractive optics,” Appl. Opt.41(29), 6176–6181 (2002). [CrossRef] [PubMed]
  19. G. A. Swartzlander, “Obtaining spatial information from an extremely unresolved source,” Opt. Lett.36, 4731–4733 (2011). [CrossRef] [PubMed]
  20. E. Mari, F. Tamburini, C. Barbieri, and A. Bianchini, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proceedings of SPIE7735, 773534 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited