OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2460–2465

Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber

Pi Ling Huang, Shau-Ching Lin, Chao-Yung Yeh, Hsin-Hui Kuo, Shr-Hau Huang, Gong-Ru Lin, Lain-Jong Li, Ching-Yuan Su, and Wood-Hi Cheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2460-2465 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A stable mode-locked fiber laser (MLFL) employing multi-layer graphene as saturable absorber (SA) is presented. The multi-layer graphene were grown by chemical vapor deposition (CVD) on Ni close to A-A stacking. Linear absorbance spectrum of multi-layer graphene was observed without absorption peak from 400 to 2000 nm. Optical nonlinearities of different atomic-layers (7-, 11-, 14-, and 21- layers) graphene based SA are investigated and compared. The results found that the thicker 21-layer graphene based SA exhibited a smaller modulation depth (MD) value of 2.93% due to more available density of states in the band structure of multi-layer graphene and favored SA nonlinearity. A stable MLFL of 21-layer graphene based SA showed a pulsewidth of 432.47 fs, a bandwidth of 6.16 nm, and a time-bandwidth product (TBP) of 0.323 at fundamental soliton-like operation. This study demonstrates that the atomic-layer structure of graphene from CVD process may provide a reliable graphene based SA for stable soliton-like pulse formation of the MLFL.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 11, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 11, 2012
Published: January 19, 2012

Pi Ling Huang, Shau-Ching Lin, Chao-Yung Yeh, Hsin-Hui Kuo, Shr-Hau Huang, Gong-Ru Lin, Lain-Jong Li, Ching-Yuan Su, and Wood-Hi Cheng, "Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber," Opt. Express 20, 2460-2465 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications, Top. Appl. Phys., (Springer, 2004), vol. 96.
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  3. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  4. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  5. I. Hernandez-Romano, D. Mandridis, D. A. May-Arrioja, J. J. Sanchez-Mondragon, and P. J. Delfyett, “Mode-locked fiber laser using an SU8/SWCNT saturable absorber,” Opt. Lett.36(11), 2122–2124 (2011). [CrossRef] [PubMed]
  6. J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express18(4), 3592–3600 (2010). [CrossRef] [PubMed]
  7. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  8. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Proc. Optical Fiber Communication Conf. ’03, Atlanta, GA, 2003, paper PD44.
  9. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010). [CrossRef]
  12. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L.-J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttriu, aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010). [CrossRef]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  14. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009). [CrossRef]
  15. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  16. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  17. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006). [CrossRef]
  18. E. Garmine, ed., Nonlinear Optics in Semiconductor (Academic, 1999), vol. 59.
  19. A. H. Castro Neto, “Graphene. Phonons behaving badly,” Nat. Mater.6(3), 176–177 (2007). [CrossRef] [PubMed]
  20. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009). [CrossRef] [PubMed]
  21. C. Y. Su, D. Fu, A. Y. Lu, K. K. Liu, Y. Xu, Z. Y. Juang, and L.-J. Li, “Transfer printing of graphene strip from the graphene grown on copper wires,” Nanotechnology22(18), 185309 (2011). [CrossRef] [PubMed]
  22. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  23. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007). [CrossRef] [PubMed]
  24. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  25. F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, R. V. Penty, I. H. White, and A. C. Ferrari, “Fabrication, characterization and mode locking application of single-walled carbon nanotube/polymer composite saturable absorbers,” Int. J. Mater. Form.1(2), 107–112 (2008). [CrossRef]
  26. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited