OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2516–2527

Intra-cavity stimulated emissions of photons in almost pure spin states without imposed nonreciprocity

Shu-Wei Chang  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2516-2527 (2012)
http://dx.doi.org/10.1364/OE.20.002516


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a chiral Fabry-Perot cavity in which only the cavity modes in almost pure spin (circular polarization) states lase in the presence of gain. In absence of imposed nonreciprocal environments and time-reversal symmetry breaking of emitter states to favor the emission of circularly-polarized photons, only the resonance of modes with a specific spin orientation remains in the cavity. We demonstrate a prototype of the cavity using distributed Bragg reflectors and cholesteric liquid crystals. This reciprocal cavity may provide a method to control the angular momentum state of emitters based on stimulated emissions.

© 2012 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 23, 2011
Revised Manuscript: January 11, 2012
Manuscript Accepted: January 11, 2012
Published: January 19, 2012

Citation
Shu-Wei Chang, "Intra-cavity stimulated emissions of photons in almost pure spin states without imposed nonreciprocity," Opt. Express 20, 2516-2527 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. de Vries, “Rotatory power and other optical properties of certain liquid crystals,” Acta. Cryst.4, 219–226 (1951). [CrossRef]
  2. C. Elachi and C. Yeh, “Stop bands for optical wave propagation in cholesteric liquid crystals,” J. Opt. Soc. Am.63, 840–842 (1973). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  4. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett.17, 221–223 (1992). [CrossRef] [PubMed]
  5. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994). [CrossRef]
  6. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Optical helices and spiral interference fringes,” Opt. Lett.22, 52–54 (1997). [CrossRef] [PubMed]
  7. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  8. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008). [CrossRef]
  9. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon.3, 161–204 (2011). [CrossRef]
  10. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev.50, 115–125 (1936). [CrossRef]
  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995). [CrossRef] [PubMed]
  12. H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett.73, 566–568 (1998). [CrossRef]
  13. H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett.94, 131108 (2009). [CrossRef]
  14. M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Electrically injected spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.87, 091108 (2005). [CrossRef]
  15. M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett.98, 146603 (2007). [CrossRef] [PubMed]
  16. M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys.40, R179–R203 (2007). [CrossRef]
  17. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23, 1707–1709 (1998). [CrossRef]
  18. B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst.358, 73–82 (2001). [CrossRef]
  19. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater.14, 746 (2002). [CrossRef]
  20. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010). [CrossRef]
  21. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002). [CrossRef] [PubMed]
  22. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett.90, 083902 (2003). [CrossRef] [PubMed]
  23. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4, 383–387 (2005). [CrossRef] [PubMed]
  24. V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron.27, 369–416 (2003). [CrossRef]
  25. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011). [CrossRef] [PubMed]
  26. Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. Part 244, L629–L632 (2005). [CrossRef]
  27. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express15, 616–622 (2007). [CrossRef] [PubMed]
  28. B. Park, M. Kim, S. W. Kim, and I. T. Kim, “Circularly polarized unidirectional lasing from a cholesteric liquid crystal layer on a 1-D photonic crystal substrate,” Opt. Express17, 12323–12331 (2009). [CrossRef] [PubMed]
  29. H. A. Lorentz, “The theorem of poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light,” Amsterdammer Akademie der Wetenschappen4, 176 (1896).
  30. J. A. KongElectromagnetic Wave Theory (EMW Publishing, 2008), last ed.
  31. S. W. Chang, “Full frequency-domain approach to reciprocal microlasers and nanolasers-perspective from Lorentz reciprocity,” Opt. Express19, 21116–21134 (2011). [CrossRef] [PubMed]
  32. S. M. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett.68, 3698–3701 (1992), (The dyadic Green’s function in that work has a sign difference from that used here). [CrossRef] [PubMed]
  33. A. L. Shelankov and G. E. Pikus, “Reciprocity in reflection and transmission of light,” Phys. Rev. B46, 3326–3336 (1992). [CrossRef]
  34. S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra (Prentice Hall, 1989), 2nd ed.
  35. P. J. W. Hands, C. A. Dobson, S. M. Morris, M. M. Qasim, D. J. Gardiner, T. D. Wilkinson, and H. J. Coles, “Wavelength-tuneable liquid crystal lasers from the visible to the near-infrared,” Proc. SPIE8114, 81140T (2011). [CrossRef]
  36. D. W. Berreman, “Optics in smoothly varying anisotropic plannar structures: application to liquid-crystal twist cells,” J. Opt. Soc. Am.63, 1374–1380 (1973). [CrossRef]
  37. S. L. Chuang, Physics of Optoelectronic Devices (Wiley and Sons, 1995), 1st ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited