OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2562–2571

Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3

Renping Cao, Mingying Peng, Lothar Wondraczek, and Jianrong Qiu  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2562-2571 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superbroad near-to-mid infrared (NIR-MIR) photoluminescence was observed from Bi5(AlCl4)3 at room temperature, spanning the spectral range of about 1000 to 4000 nm. On the basis of structural considerations and dynamic analyses, Bi53+ clusters were identified as the optically active species, inherently differing from the species which is typically believed to be active in NIR-emitting Bi-doped glasses. In comparison to most other NIR-luminescent Bi-doped materials, the MIR-part of the luminescence spectrum is still present at room temperature. Emission intensity and excited state lifetime were found to exhibit abnormal temperature dependence, where the former increases with temperature up to a critical value of about 150 K. This behavior is related to a temperature-dependent overlap between ground state and excited states. The observed stabilization of MIR photoemission at room temperature may be a starting point for the development of Bi-based NIR-MIR light sources with superbroad emission spectrum, where Bi53+ or similar polycationic species act as optical gain medium.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:

Original Manuscript: November 22, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 10, 2012
Published: January 20, 2012

Renping Cao, Mingying Peng, Lothar Wondraczek, and Jianrong Qiu, "Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3," Opt. Express 20, 2562-2571 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009). [CrossRef]
  2. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  3. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett. 36(2), 166–168 (2011). [CrossRef] [PubMed]
  4. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express 19(7), 6599–6608 (2011). [CrossRef] [PubMed]
  5. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008). [CrossRef]
  6. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  7. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007). [CrossRef]
  8. I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano-aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011). [CrossRef]
  9. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  10. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005). [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009). [CrossRef]
  12. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009). [CrossRef] [PubMed]
  13. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  14. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011). [CrossRef]
  15. W. Wang, Q. Yan, J. Ren, G. Chen, N. Da, and L. Wondraczek, “Ultrabroad near-infrared photoluminescence from Bi/Dy/Tm co-doped chalcohalide glasses,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. in press.
  16. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  17. M. Peng and L. Wondraczek, “Photoluminescence of Sr(2)P(2)O(7):Bi(2+) as a red phosphor for additive light generation,” Opt. Lett. 35(15), 2544–2546 (2010). [CrossRef] [PubMed]
  18. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009). [CrossRef]
  19. J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal,” Opt. Express 18(4), 3385–3391 (2010). [CrossRef] [PubMed]
  20. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009). [CrossRef]
  21. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007). [CrossRef]
  22. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  23. E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem. 635(2), 297–300 (2009). [CrossRef]
  24. H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett. 36(2), 100–102 (2011). [CrossRef] [PubMed]
  25. H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem. 21(12), 4060–4063 (2011). [CrossRef]
  26. B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met. 116(1), 159–168 (1986). [CrossRef]
  27. C. Niels, J. Bjerrum, and G. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem. 6(6), 1162–1172 (1967). [CrossRef]
  28. J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. The preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem. 7(2), 198–208 (1968). [CrossRef]
  29. S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans. 91, 4223–4234 (1995). [CrossRef]
  30. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 microm wavelength range,” Opt. Lett. 33(14), 1578–1580 (2008). [CrossRef] [PubMed]
  31. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr(3+)-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011). [CrossRef] [PubMed]
  32. B. Q. Yao, X. M. Duan, L. L. Zheng, Y. L. Ju, Y. Z. Wang, G. J. Zhao, and Q. Dong, “Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser,” Opt. Express 16(19), 14668–14674 (2008). [CrossRef] [PubMed]
  33. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express 19(21), 20799–20807 (2011). [CrossRef] [PubMed]
  34. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006). [CrossRef]
  35. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
  36. Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp. 509(24), 6816–6818 (2011). [CrossRef]
  37. E. Perenthaler, H. Schulz, and A. Rabenau, “Die Strukturen von LiAlCl4 und NaAlCl4 als Funktion der Temperatur,” Z. Anorg. Allg. Chem. 491(1), 259–265 (1982). [CrossRef]
  38. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun. 140(1), 38–41 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited