OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2572–2580

Optical and electrical study of organic solar cells with a 2D grating anode

Wei E.I. Sha, Wallace C.H. Choy, Yumao Wu, and Weng Cho Chew  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2572-2580 (2012)
http://dx.doi.org/10.1364/OE.20.002572


View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate both optical and electrical properties of organic solar cells (OSCs) incorporating 2D periodic metallic back grating as an anode. Using a unified finite-difference approach, the multiphysics modeling framework for plasmonic OSCs is established to seamlessly connect the photon absorption with carrier transport and collection by solving the Maxwell’s equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations). Due to the excited surface plasmon resonance, the significantly nonuniform and extremely high exciton generation rate near the metallic grating are strongly confirmed by our theoretical model. Remarkably, the nonuniform exciton generation indeed does not induce more recombination loss or smaller open-circuit voltage compared to 1D multilayer standard OSC device. The increased open-circuit voltage and reduced recombination loss by the plasmonic OSC are attributed to direct hole collections at the metallic grating anode with a short transport path. The work provides an important multiphysics understanding for plasmonic organic photovoltaics.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:
Solar Energy

History
Original Manuscript: November 23, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 5, 2012
Published: January 20, 2012

Citation
Wei E.I. Sha, Wallace C.H. Choy, Yumao Wu, and Weng Cho Chew, "Optical and electrical study of organic solar cells with a 2D grating anode," Opt. Express 20, 2572-2580 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010). [CrossRef] [PubMed]
  2. C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys.73, 096401 (2010). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. X. H. Chen, C. C. Zhao, L. Rothberg, and M. K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification,” Appl. Phys. Lett.93, 123302 (2008). [CrossRef]
  5. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett.95, 013305 (2009). [CrossRef]
  6. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano5, 959–967 (2011). [CrossRef] [PubMed]
  7. J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011). [CrossRef] [PubMed]
  8. D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer,” J. Mater. Chem.21, 16349–16356 (2011). [CrossRef]
  9. F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I. Sha, and D. D. S. Fung, “Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers,” Appl. Phys. Lett.99, 153304 (2011). [CrossRef]
  10. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2011). [CrossRef]
  11. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008). [CrossRef] [PubMed]
  12. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009). [CrossRef]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  14. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36, 478–480 (2011). [CrossRef] [PubMed]
  15. W. E. I. Sha, W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express19, 15908–15918 (2011). [CrossRef] [PubMed]
  16. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99, 113304 (2011). [CrossRef]
  17. T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU factorization,” SIAM J. Matrix Anal. Appl.18, 140–158 (1997). [CrossRef]
  18. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express18, 5993–6007 (2010). [CrossRef] [PubMed]
  19. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, 1984). [CrossRef]
  20. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B72, 085205 (2005). [CrossRef]
  21. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100, 114509 (2006). [CrossRef]
  22. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express18, 2682–2694 (2010). [CrossRef] [PubMed]
  23. X. F. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express19, A888–A896 (2011). [CrossRef] [PubMed]
  24. P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys28, 433–530 (1903).
  25. L. Onsager, “Initial recombination of ions,” Phys. Rev.54, 554–557 (1938). [CrossRef]
  26. C. L. Braun, “Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production,” J. Chem. Phys.80, 4157–4161 (1984). [CrossRef]
  27. P. Boland, K. Lee, J. Dean, and G. Namkoong, “Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites,” Sol. Energy Mater. Sol. Cells94, 2170–2175 (2010). [CrossRef]
  28. Y. M. Nam, J. Huh, and W. H. Jo, “A computational study on optimal design for organic tandem solar cells,” Sol. Energy Mater. Sol. Cells95, 1095–1101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited