OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2640–2648

Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity

Xiaoguang Tu, Junfeng Song, Tsung-Yang Liow, Mi Kyoung Park, Jessie Quah Yiying, Jack Sheng Kee, Mingbin Yu, and Guo-Qiang Lo  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2640-2648 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As the sensitivity and detection limit of photonic refractive index (RI) biosensor increases, the temperature dependence becomes a major challenge. In this paper, we present a Mach-Zehnder Interferometer (MZI) biosensor based on silicon nitride slot waveguides. The biosensor is designed for minimal temperature dependence without compromising the performance in terms of sensitivity and detection limit. With air cladding, the measured surface sensitivity and detection limit of MZI biosensor reach 7.16 nm/ (ngmm−2) and 1.30 (pgmm−2), while achieving a low temperature dependence is 5.0 pm/o C. With water cladding, the measured bulk sensitivity and detection limit reach 1730(2π)/RIU and 1.29 × 10−5 RIU respectively. By utilizing Vernier effect through cascaded MZI structures, the measured sensitivity enhancement factor is 8.38, which results in a surface detection limit of 0.155 (pgmm−2).

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:

Original Manuscript: October 25, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: December 13, 2011
Published: January 20, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Xiaoguang Tu, Junfeng Song, Tsung-Yang Liow, Mi Kyoung Park, Jessie Quah Yiying, Jack Sheng Kee, Mingbin Yu, and Guo-Qiang Lo, "Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity," Opt. Express 20, 2640-2648 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors, (Springer, 2004).
  3. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface Plasmon resonance-how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995). [CrossRef]
  4. J. Melendez, R. Carr, D. U. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, “A commercial solution for surface Plasmon sensing,” Sens. Actuators B Chem. 35(1-3), 212–216 (1996). [CrossRef]
  5. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. B. Jones, R. C. Bailey, and L. C. Gunn, “Laber-Free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010). [CrossRef]
  7. D. X. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009). [CrossRef] [PubMed]
  8. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010). [CrossRef] [PubMed]
  9. L. Jin, M. Y. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011). [CrossRef] [PubMed]
  10. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  11. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010). [CrossRef] [PubMed]
  12. A. Densmore, M. Vachon, D. X. Xu, S. Janz, R. Ma, Y. H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009). [CrossRef] [PubMed]
  13. D. X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J. M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18(22), 22867–22879 (2010). [CrossRef] [PubMed]
  14. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010). [CrossRef] [PubMed]
  15. J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X Jian, X Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  16. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009). [CrossRef] [PubMed]
  17. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010). [CrossRef] [PubMed]
  18. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  19. R. Amatya, C. W. Holzwarth, H. I. Smith and R. J. Ram, “Efficient thermal tuning for second-order silicon nitride microring resonators,” Photonics. In. Switching, 149–150 (2007).
  20. C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004). [CrossRef]
  21. H. Su and X. G. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007). [CrossRef]
  22. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  23. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited