OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2649–2656

Nanoantenna coupled UV subwavelength photodetectors based on GaN

Serkan Butun, Neval A. Cinel, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2649-2656 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The integration of nano structures with opto-electronic devices has many potential applications. It allows the coupling of more light into or out of the device while decreasing the size of the device itself. Such devices are reported in the VIS and NIR regions. However, making plasmonic structures for the UV region is still a challenge. Here, we report on a UV nano-antenna integrated metal semiconductor metal (MSM) photodetector based on GaN. We designed and fabricated Al grating structures. Well defined plasmonic resonances were measured in the reflectance spectra. Optimized grating structure integrated photodetectors exhibited more than sevenfold photocurrent enhancement. Finite difference time domain simulations revealed that both geometrical and plasmonic effects played role in photocurrent enhancement.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.7190) Detectors : Ultraviolet
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: December 5, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 13, 2012
Published: January 20, 2012

Serkan Butun, Neval A. Cinel, and Ekmel Ozbay, "Nanoantenna coupled UV subwavelength photodetectors based on GaN," Opt. Express 20, 2649-2656 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009). [CrossRef]
  3. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010). [CrossRef] [PubMed]
  4. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004). [CrossRef]
  5. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005). [CrossRef]
  6. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009). [CrossRef]
  7. C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010). [CrossRef]
  8. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009). [CrossRef] [PubMed]
  9. Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of UV extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photon. J.1(4), 245–253 (2009). [CrossRef]
  10. Q. Q. Gan, L. C. Zhou, V. Dierolf, F. J. Bartoli, and Ieee, “UV extraordinary optical transmission through nanoslits,” in Proceedings of the 2009 IEEE Leos Annual Meeting Conference, 1 and 2 (IEEE, New York, 2009), pp. 154–155.
  11. J. Lin, A. Mohammadizia, A. Neogi, H. Morkoc, and M. Ohtsu, “Surface plasmon enhanced UV emission in AlGaN/GaN quantum well,” Appl. Phys. Lett.97(22), 221104 (2010). [CrossRef]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  13. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  14. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  15. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett.99(8), 083901 (2007). [CrossRef] [PubMed]
  16. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000). [CrossRef]
  17. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  18. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.2(4), 262–267 (2006). [CrossRef]
  19. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express15(5), 2613–2621 (2007). [CrossRef] [PubMed]
  20. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  21. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys.72(6), 064401 (2009). [CrossRef]
  22. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., New York, 1985).
  25. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.82(10), 5090–5096 (1997). [CrossRef]
  26. S. Butun, M. Gokkavas, H. B. Yu, and E. Ozbay, “Low dark current metal-semiconductor-metal photodiodes based on semi-insulating GaN,” Appl. Phys. Lett.89(7), 073503 (2006). [CrossRef]
  27. H. Yu, M. K. Ozturk, S. Ozcelik, and E. Ozbay, “A study of semi-insulating GaN grown on AlN buffer/sapphire substrate by metalorganic chemical vapor deposition,” J. Cryst. Growth293(2), 273–277 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited