OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2657–2667

Solitons supported by spatially inhomogeneous nonlinear losses

Olga V. Borovkova, Yaroslav V. Kartashov, Victor A. Vysloukh, Valery E. Lobanov, Boris A. Malomed, and Lluis Torner  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2657-2667 (2012)
http://dx.doi.org/10.1364/OE.20.002657


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We uncover that, in contrast to the common belief, stable dissipative solitons exist in media with uniform gain in the presence of nonuniform cubic losses, whose local strength grows with coordinate η (in one dimension) faster than |η| . The spatially-inhomogeneous absorption also supports new types of solitons, that do not exist in uniform dissipative media. In particular, single-well absorption profiles give rise to spontaneous symmetry breaking of fundamental solitons in the presence of uniform focusing nonlinearity, while stable dipoles are supported by double-well absorption landscapes. Dipole solitons also feature symmetry breaking, but under defocusing nonlinearity.

© 2012 OSA

OCIS Codes
(190.5940) Nonlinear optics : Self-action effects
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 20, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 12, 2012
Published: January 20, 2012

Citation
Olga V. Borovkova, Yaroslav V. Kartashov, Victor A. Vysloukh, Valery E. Lobanov, Boris A. Malomed, and Lluis Torner, "Solitons supported by spatially inhomogeneous nonlinear losses," Opt. Express 20, 2657-2667 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
  2. V. A. Brazhnyi and V. V. Konotop, “Theory of nonlinear matter waves in optical lattices,” Mod. Phys. Lett. B 18(14), 627 (2004). [CrossRef]
  3. O. Morsch and M. Oberthaler, “Dynamics of Bose-Einstein condensates in optical lattices,” Rev. Mod. Phys. 78(1), 179–215 (2006). [CrossRef]
  4. L. Torner, “Walkoff-compensated dispersion-mapped quadratic solitons,” IEEE Photon. Technol. Lett. 11(10), 1268–1270 (1999). [CrossRef]
  5. I. Towers and B. A. Malomed, “Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. 19(3), 537 (2002). [CrossRef]
  6. F. K. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, “Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length,” Phys. Rev. A 67(1), 013605 (2003). [CrossRef]
  7. H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate,” Phys. Rev. Lett. 90(4), 040403 (2003). [CrossRef] [PubMed]
  8. M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97(3), 033903 (2006). [CrossRef] [PubMed]
  9. B. A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006).
  10. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83(1), 247–306 (2011). [CrossRef]
  11. H. Sakaguchi and B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(4), 046610 (2005). [CrossRef] [PubMed]
  12. G. Fibich, Y. Sivan, and M. I. Weinstein, “Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure,” Physica D 217(1), 31–57 (2006). [CrossRef]
  13. J. Garnier and F. K. Abdullaev, “Transmission of matter wave solitons through nonlinear traps and barriers,” Phys. Rev. A 74(1), 013604 (2006). [CrossRef]
  14. D. L. Machacek, E. A. Foreman, Q. E. Hoq, P. G. Kevrekidis, A. Saxena, D. J. Frantzeskakis, and A. R. Bishop, “Statics and dynamics of an inhomogeneously nonlinear lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036602 (2006). [CrossRef] [PubMed]
  15. Y. Kominis and K. Hizanidis, “Lattice solitons in self-defocusing optical media: analytical solutions of the nonlinear Kronig-Penney model,” Opt. Lett. 31(19), 2888–2890 (2006). [CrossRef] [PubMed]
  16. J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98(6), 064102 (2007). [CrossRef] [PubMed]
  17. P. Niarchou, G. Theocharis, P. G. Kevrekidis, P. Schmelcher, and D. J. Frantzeskakis, “Soliton oscillations in collisionally inhomogeneous attractive Bose-Einstein condensates,” Phys. Rev. A 76(2), 023615 (2007). [CrossRef]
  18. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett. 33(15), 1747–1749 (2008). [CrossRef] [PubMed]
  19. Y. Sivan, G. Fibich, and B. Ilan, “Drift instability and tunneling of lattice solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(4), 045601 (2008). [CrossRef] [PubMed]
  20. F. K. Abdullaev, A. Gammal, M. Salerno, and L. Tomio, “Localized modes of binary mixtures of Bose-Einstein condensates in nonlinear optical lattices,” Phys. Rev. A 77(2), 023615 (2008). [CrossRef]
  21. H. A. Cruz, V. A. Brazhnyi, and V. V. Konotop, “Partial delocalization of two-component condensates in optical lattices,” J. Phys. B 41(3), 035304 (2008). [CrossRef]
  22. H. Sakaguchi and B. A. Malomed, “Solitons in combined linear and nonlinear lattice potentials,” Phys. Rev. A 81(1), 013624 (2010). [CrossRef]
  23. V. Pérez-García and R. Pardo, “Localization phenomena in nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities: Theory and applications to Bose-Einstein condensates,” Physica D 238(15), 1352–1361 (2009). [CrossRef]
  24. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63(5), 642–648 (2003). [CrossRef]
  25. D. Neshev, A. Sukhorukov, Y. Kivshar, E. Ostrovskaya, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710 (2003). [CrossRef] [PubMed]
  26. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28(21), 2094–2096 (2003). [CrossRef] [PubMed]
  27. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12(13), 2831–2837 (2004). [CrossRef] [PubMed]
  28. Y. J. He and H. Z. Wang, “(1+1)-dimensional dipole solitons supported by optical lattice,” Opt. Express 14(21), 9832–9837 (2006). [CrossRef] [PubMed]
  29. O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner, “Algebraic bright and vortex solitons in defocusing media,” Opt. Lett. 36(16), 3088–3090 (2011). [CrossRef] [PubMed]
  30. O. V. Borovkova, Y. V. Kartashov, L. Torner, and B. A. Malomed, “Bright solitons from defocusing nonlinearities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(3), 035602 (2011). [CrossRef] [PubMed]
  31. Y. V. Kartashov, V. A. Vysloukh, L. Torner, and B. A. Malomed, “Self-trapping and splitting of bright vector solitons under inhomogeneous defocusing nonlinearities,” Opt. Lett. 36(23), 4587–4589 (2011). [CrossRef] [PubMed]
  32. W.-P. Zhong, M. Belić, G. Assanto, B. A. Malomed, and T. Huang, “Light bullets in the spatiotemporal nonlinear Schrödinger equation with a variable negative diffraction coefficient,” Phys. Rev. A 84(4), 043801 (2011). [CrossRef]
  33. B. A. Malomed, “Evolution of nonsoliton and “quasi-classical” wavetrains in nonlinear Schrödinger and Korteweg-de Vries equations with dissipative perturbations,” Physica D 29(1-2), 155–172 (1987). [CrossRef]
  34. O. Thual and S. Fauve, “Localized structures generated by subcritical instabilities,” J. Phys. France 49(11), 1829–1833 (1988). [CrossRef]
  35. W. van Saarloos and P. C. Hohenberg, “Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical bifurcation,” Phys. Rev. Lett. 64(7), 749–752 (1990). [CrossRef] [PubMed]
  36. V. Hakim, P. Jakobsen, and Y. Pomeau, “Fronts vs solitary waves in non equilibrium systems,” Europhys. Lett. 11(1), 19–24 (1990). [CrossRef]
  37. B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42(10), 6009–6014 (1990). [CrossRef] [PubMed]
  38. P. Marcq, H. Chate, and R. Conte, “Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation,” Physica D 73(4), 305–317 (1994). [CrossRef]
  39. C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Spec. Top. 173(1), 233–243 (2009). [CrossRef]
  40. D. A. Zezyulin, G. L. Alfimov, and V. V. Konotop, “Nonlinear modes in a complex parabolic potential,” Phys. Rev. A 81(1), 013606 (2010). [CrossRef]
  41. C. H. Tsang, B. A. Malomed, C. K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59(1), 81–89 (2010). [CrossRef]
  42. F. Kh. Abdullaev, V. V. Konotop, M. Salerno, and A. V. Yulin, “Dissipative periodic waves, solitons, and breathers of the nonlinear Schrödinger equation with complex potentials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 056606 (2010). [CrossRef] [PubMed]
  43. D. A. Zezyulin, V. V. Konotop, and G. L. Alfimov, “Dissipative double-well potential: nonlinear stationary and pulsating modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(5), 056213 (2010). [CrossRef] [PubMed]
  44. D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36(7), 1200–1202 (2011). [CrossRef] [PubMed]
  45. Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83(4), 041806 (2011). [CrossRef]
  46. Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Dissipative surface solitons in periodic structures,” Europhys. Lett. 91(3), 34003 (2010). [CrossRef]
  47. V. E. Lobanov, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stable radially symmetric and azimuthally modulated vortex solitons supported by localized gain,” Opt. Lett. 36(1), 85–87 (2011). [CrossRef] [PubMed]
  48. C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(6), 066609 (2011). [CrossRef]
  49. O. V. Borovkova, V. E. Lobanov, and B. A. Malomed, “Stable nonlinear amplification of solitons without gain saturation,” Europhys. Lett.in press.
  50. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36(3), R1–R16 (2003). [CrossRef]
  51. G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, “Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,” Phys. Rev. A 55(6), 4318–4324 (1997). [CrossRef]
  52. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, “Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates,” Phys. Rev. Lett. 79(25), 4950–4953 (1997). [CrossRef]
  53. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping,” Phys. Rev. A 59(1), 620–633 (1999). [CrossRef]
  54. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, “Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction,” Phys. Rev. Lett. 95(1), 010402 (2005). [CrossRef] [PubMed]
  55. A. Sigler and B. A. Malomed, “Solitary pulses in linearly coupled cubic-quintic Ginzburg-Landau equations,” Physica D 212(3-4), 305–316 (2005). [CrossRef]
  56. L. M. Hocking and K. Stewartson, “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance,” Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1566), 289–313 (1972). [CrossRef]
  57. N. R. Pereira and L. Stenflo, “Nonlinear Schrödinger equation including growth and damping,” Phys. Fluids 20(10), 1733 (1977). [CrossRef]
  58. J. Atai and B. A. Malomed, “Exact stable pulses in asymmetric linearly coupled Ginzburg–Landau equations,” Phys. Lett. A 246(5), 412–422 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited