OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2681–2692

Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging

Shuichi Makita, Franck Jaillon, Masahiro Yamanari, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2681-2692 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-beam-scan Doppler optical coherence angiography (DB-OCA) enables high-speed, high-sensitivity blood flow imaging. However, birefringence of biological tissues is an obstacle to vasculature imaging. Here, the influence of polarization and birefringence on DB-OCA imaging was analyzed. A DB-OCA system without birefringence artifact has been developed by introducing a Faraday rotator. The performance was confirmed in vitro using chicken muscle and in vivo using the human eye. Birefringence artifacts due to birefringent tissues were suppressed. Micro-vasculatures in the lamina cribrosa and nerve fiber layer of human eyes were visualized in vivo. High-speed and high-sensitivity micro-vasculature imaging involving birefringent tissues is available with polarization multiplexing DB-OCA.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 9, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 9, 2012
Published: January 23, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Shuichi Makita, Franck Jaillon, Masahiro Yamanari, and Yoshiaki Yasuno, "Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging," Opt. Express 20, 2681-2692 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer, 2008). [CrossRef]
  2. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22, 1119–1121 (1997). [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22, 1439–1441 (1997). [CrossRef]
  4. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11, 3116–3121 (2003). [CrossRef] [PubMed]
  5. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express11, 3490–3497 (2003). [CrossRef] [PubMed]
  6. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–7840 (2006). [CrossRef] [PubMed]
  7. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 μm wavelength,” Opt. Express15, 11402–11412 (2007). [CrossRef] [PubMed]
  8. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16, 6008–6025 (2008). [CrossRef] [PubMed]
  9. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified hilbert transform,” Opt. Express16, 12350–12361 (2008). [CrossRef] [PubMed]
  10. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15, 1219–1223 (2009). [CrossRef] [PubMed]
  11. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17, 23736–23754 (2009). [CrossRef]
  12. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17, 22190–22200 (2009). [CrossRef] [PubMed]
  13. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35, 1467–1469 (2010). [CrossRef] [PubMed]
  14. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2, 1504–1513 (2011). [CrossRef] [PubMed]
  15. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19, 1271–1283 (2011). [CrossRef] [PubMed]
  16. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19, 1217–1227 (2011). [CrossRef] [PubMed]
  17. F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express2, 1147–1158 (2011). [CrossRef] [PubMed]
  18. Q. Zhou and R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt.36, 2273–2285 (1997). [CrossRef] [PubMed]
  19. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci.43, 82–86 (2002). [PubMed]
  20. J. T. Oh, S. W. Lee, Y. S. Kim, K. B. Suhr, and B. M. Kim, “Quantification of the wound healing using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.11, 041124 (2006). [CrossRef] [PubMed]
  21. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol.92, 204–209 (2008). [CrossRef] [PubMed]
  22. M. Yamanari, S. Makita, V. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006). [CrossRef] [PubMed]
  23. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7, 350–358 (2002). [CrossRef] [PubMed]
  24. Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, Computational Optics Group in the University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan, are preparing a manuscript to be called “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.”
  25. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett.33, 1425–1427 (2008). [CrossRef] [PubMed]
  26. A. L. Kornzweig, I. Eliasoph, and M. Feldstein, “Selective atrophy of the radial peripapillary capillaries in chronic glaucoma,” Arch. Ophthalmol.80, 696–702 (1968). [CrossRef] [PubMed]
  27. M. Alterman and P. Henkind, “Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma,” Br. J. Ophthalmol.52, 26–31 (1968). [CrossRef] [PubMed]
  28. D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol.129, 715–722 (2000). [CrossRef] [PubMed]
  29. C. K. Hitzenberger and A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett.24, 622–624 (1999). [CrossRef]
  30. D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett.25, 227–229 (2000). [CrossRef]
  31. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol.49, 111–119 (2004). [CrossRef] [PubMed]
  32. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, M. Bonesi, and C. K. Hitzenberger, “Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett.35, 3913–3915 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited