OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2824–2831

Study of the photosensitivity of GeS binary glasses to 800nm femtosecond pulses

S.H. Messaddeq, J.P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2824-2831 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first study of the photosensitivity of GeS binary glasses in response to irradiation to femtosecond pulses at 800nm. A maximum positive refractive index change of 3.5x10−3 is demonstrated with the possibility to control the waveguide diameter from ~8 to ~50 µm by adjusting the input pulse energy. It is also demonstrated that under different exposure conditions, a maximum negative index change of −7.5x10−3 can be reached. The present results clearly illustrate the potential of this family of glasses for the fabrication of mid-infrared waveguides.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Microfabrication

Original Manuscript: December 1, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 15, 2012
Published: January 23, 2012

S.H. Messaddeq, J.P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, "Study of the photosensitivity of GeS binary glasses to 800nm femtosecond pulses," Opt. Express 20, 2824-2831 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001). [CrossRef] [PubMed]
  3. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999). [CrossRef] [PubMed]
  4. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett.27(24), 2200–2202 (2002). [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  6. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  7. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29(7), 748–750 (2004). [CrossRef] [PubMed]
  8. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B26(7), 1370–1378 (2009). [CrossRef]
  9. E. Romanova, A. Konyukhov, S. Muraviov, and A. Adrianov, “Thermal diffusion in chalcogenide glass irradiated by a train of femtosecond laser pulses,” 12th International conference on Transparent Optical Networks (ICTON), DOI 10.1109/ICTON.2010.5549182 (2010). [CrossRef]
  10. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17(19), 4802–4805 (2006). [CrossRef]
  11. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18(7), 6885–6890 (2010). [CrossRef] [PubMed]
  12. T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B28(9), 2284–2290 (2011). [CrossRef]
  13. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  14. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27(23), 2061–2063 (2002). [CrossRef] [PubMed]
  15. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt.27(10), 1956–1959 (1988). [CrossRef] [PubMed]
  16. H. Ticha´ and L. Tichy´, “Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides,” J. Optoelectron. Adv. Mater.4, 381–386 (2002).
  17. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010). [CrossRef] [PubMed]
  18. E. A. Romanova and A. I. Konyukhov, “Study of irradiation conditions and thermodynamics of optical glass in the problem of modification of material by femtosecond laser pulses,” Opt. Spectrosc.104(5), 784–790 (2008). [CrossRef]
  19. K. Singh, A. K. Singh, and N. S. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys.8(2), 159–162 (2008). [CrossRef]
  20. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  21. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chacogenide wires,” Opt. Lett.36(15), 2886–2888 (2011). [CrossRef] [PubMed]
  22. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008). [CrossRef]
  23. R. Ahmad and M. Rochette, “Photosensitivity at 1550nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011). [CrossRef]
  24. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys.99(9), 093104 (2006). [CrossRef]
  25. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  26. E. Makovicky, “Crystal structures of sulfides and other chalcogenides,” Rev. Mineral. Geochem.61(1), 7–125 (2006). [CrossRef]
  27. C. Z. Tan and J. Arndt, “The mean polarizability and density of glasses,” Physica B229(3-4), 217–224 (1997). [CrossRef]
  28. T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, and M. Richardson, “Femtosecond laser photo respond of Ge23Sb7S70 films,” Opt. Express16(24), 20081–20098 (2008). [CrossRef] [PubMed]
  29. G. Dalba, P. Fornasini, G. Giunta, and E. Burattini, “XRD and EXAFS study of the local structure in some non-crystalline Sb-S compounds,” J. Non-Cryst. Solids107(2-3), 261–270 (1989). [CrossRef]
  30. P. Masselin, D. Le Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater.33(6), 872–876 (2011). [CrossRef]
  31. R. Zallen, M. L. Slade, and A. T. Ward, “Lattice vibrations and interlayer interactions in crystalline As2S3 and As2Se3,” Phys. Rev. B3(12), 4257–4273 (1971). [CrossRef]
  32. P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B33(8), 5421–5434 (1986). [CrossRef]
  33. Y. Kawamoto and C. Kawashima, “Infrared and Raman spectroscopic studies on short-range structure of vitreous GeS,” Mater. Res. Bull.17(12), 1511–1516 (1982). [CrossRef]
  34. S. H. Messaddeq, V. K. Tikhomirov, Y. Messaddeq, D. Lezal, and M. S. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B63(22), 224203 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited