OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2905–2910

Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator

Mikael Malmström, Walter Margulis, Oleksandr Tarasenko, Valdas Pasiskevicius, and Fredrik Laurell  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2905-2910 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

© 2012 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.3510) Lasers and laser optics : Lasers, fiber
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 28, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: January 16, 2012
Published: January 24, 2012

Mikael Malmström, Walter Margulis, Oleksandr Tarasenko, Valdas Pasiskevicius, and Fredrik Laurell, "Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator," Opt. Express 20, 2905-2910 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  2. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett.13(1), 56–58 (1988). [CrossRef] [PubMed]
  3. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett.15(13), 752–754 (1990). [CrossRef] [PubMed]
  4. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett.16(8), 539–541 (1991). [CrossRef] [PubMed]
  5. D. Richardson, R. Laming, D. Payne, V. Matsas, and M. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett.27(6), 542–544 (1991). [CrossRef]
  6. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18(13), 1080–1082 (1993). [CrossRef] [PubMed]
  7. J. D. Kafka, T. Baer, and D. W. Hall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett.14(22), 1269–1271 (1989). [CrossRef] [PubMed]
  8. T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett.30(13), 1051–1053 (1994). [CrossRef]
  9. M. Bello-Jiménez, C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andrés, “Experimental study of an actively mode-locked fiber ring laser based on in-fiber amplitude modulation,” Appl. Phys. B105(2), 269–276 (2011). [CrossRef]
  10. I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett.8(3), 227–231 (2011). [CrossRef]
  11. N. Myrén and W. Margulis, “All-fiber electrooptical mode-locking and tuning,” IEEE Photon. Technol. Lett.17(10), 2047–2049 (2005). [CrossRef]
  12. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express17(18), 15534–15540 (2009). [CrossRef] [PubMed]
  13. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  14. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett.19(10), 701–703 (1994). [CrossRef] [PubMed]
  15. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett.30(25), 2162–2163 (1994). [CrossRef]
  16. T. Fujiwara, D. Wong, and S. Fleming, “Large electrooptic modulation in a thermally-poled germanosilicate fiber,” IEEE Photon. Technol. Lett.7(10), 1177–1179 (1995). [CrossRef]
  17. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett.32(11), 1356–1358 (2007). [CrossRef] [PubMed]
  18. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noiselike pulses from a figure-eight fiber laser,” Appl. Opt.50(25), E24–E31 (2011). [CrossRef]
  19. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett.22(11), 799–801 (1997). [CrossRef] [PubMed]
  20. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992). [CrossRef]
  21. C. Campos and E. Antonio, “Study of Stability of an Erbium-doped Fiber Laser Asynchronous Modelocked at 10 GHz,” IEEE Latin Am. Transact.9(5), 711–714 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited