OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2932–2941

Fluorescence photon measurements from single quantum dots on an optical nanofiber

Ramachandrarao Yalla, K. P. Nayak, and K. Hakuta  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2932-2941 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigate the fluorescence photon emission characteristics for single q-dots by using optical nanofibers. We demonstrate that single q-dots can be deposited along an optical nanofiber systematically and reproducibly with a precision of 5 μm. For single q-dots on an optical nanofiber, we measure the fluorescence photon numbers coupled into the nanofiber and the normalized photon correlations, by varying the excitation laser intensity. We estimate the fluorescence photon coupling efficiency into the nanofiber guided modes.

© 2012 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(060.5565) Fiber optics and optical communications : Quantum communications
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Quantum Optics

Original Manuscript: September 20, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: January 19, 2012
Published: January 24, 2012

Ramachandrarao Yalla, K. P. Nayak, and K. Hakuta, "Fluorescence photon measurements from single quantum dots on an optical nanofiber," Opt. Express 20, 2932-2941 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007). [CrossRef] [PubMed]
  3. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys.10, 053003 (2008). [CrossRef]
  4. V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A69, 013812 (2004). [CrossRef]
  5. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005). [CrossRef]
  6. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007). [CrossRef] [PubMed]
  7. K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79, 021801 (2009). [CrossRef]
  8. M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. L. Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express18, 17154–17164 (2010). [CrossRef] [PubMed]
  9. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004). [CrossRef]
  10. E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010). [CrossRef] [PubMed]
  11. F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009). [CrossRef]
  12. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011). [CrossRef] [PubMed]
  13. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36, 3115–3117 (2011). [CrossRef] [PubMed]
  14. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383, 802–804 (1996). [CrossRef]
  15. Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78, 1110–1113 (1997). [CrossRef]
  16. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys.112, 3117–3120 (2000). [CrossRef]
  17. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys.115, 1028–1040 (2001). [CrossRef]
  18. R. Loudon, Quantum Theory of Light (Oxford University Press, 2000).
  19. Invitrogen, Certificate of analysis Q21371MP 834674.
  20. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater.11, 1243–1256 (1999). [CrossRef]
  21. R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett.90, 101114 (2007). [CrossRef]
  22. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett.329, 399–404 (2000). [CrossRef]
  23. In the company quotation, the quantum efficiency was measured relatively to rhodamine 101. We assume the quantum efficiency of rhodamine 101 to be 100%.
  24. T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem.84, 1871–1872 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited