OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2992–3004

Semi-empirical system scaling rules for DWDM system design

Brian DeMuth, Michael Y. Frankel, and Vladimir Pelekhaty  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2992-3004 (2012)
http://dx.doi.org/10.1364/OE.20.002992


View Full Text Article

Enhanced HTML    Acrobat PDF (1852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, several theoretical papers have derived relationships for fiber-optic transmission system performance in terms of associated physical layer parameters. At the same time, a large number of detailed experiments have been and continue being performed that demonstrate increasing capacities and unregenerated reach. We use this wealth of experimental data to validate the aforementioned relationships, and to propose a set of simple scaling rules for performance. We find that, despite substantial differences in experimental configurations, overall performance in terms of spectral efficiency and unregenerated reach is well explained by scaling rules. These scaling rules will be useful to carriers seeking to understand what they should expect to see in terms of network performance using deployed or easily accessible technology, which may be radically different from hero experiment results. These rules will also be useful to design engineers seeking cost effective tradeoffs to achieving higher performance using realistic upgrade strategies, and what might be encountered as a fundamental limit.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 2, 2011
Revised Manuscript: January 16, 2012
Manuscript Accepted: January 17, 2012
Published: January 25, 2012

Citation
Brian DeMuth, Michael Y. Frankel, and Vladimir Pelekhaty, "Semi-empirical system scaling rules for DWDM system design," Opt. Express 20, 2992-3004 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28(4), 662–701 (2010). [CrossRef]
  2. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol.28(4), 423–433 (2010). [CrossRef]
  3. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100Gbit/s transmission over 9000km using erbium-doped fibre repeaters only,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.7.C.3.
  4. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16 x 100Gb/s Transmission Over Installed Fiber With Different Dispersion Maps,” IEEE Photon. Technol. Lett.22(6), 371–373 (2010). [CrossRef]
  5. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224 Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010). [CrossRef]
  6. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010). [CrossRef]
  7. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express18(18), 19039–19054 (2010). [CrossRef] [PubMed]
  8. G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.
  9. C. Xia and D. van den Borne, “Impact of the Channel Count on the Nonlinear Tolerance in Coherently-detected POLMUX-QPSK modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO1.
  10. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011). [CrossRef]
  11. A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7.
  12. Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple Fiber Model for Determination of XPM Effects,” J. Lightwave Technol.29(7), 974–986 (2011). [CrossRef]
  13. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express19(9), 8079–8084 (2011). [CrossRef] [PubMed]
  14. V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance Evaluation of Long-Haul 111Gb/s PM-QPSK Transmission Over Different Fiber Types,” IEEE Photon. Technol. Lett.22(19), 1446–1448 (2010). [CrossRef]
  15. A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photon. Technol. Lett.22(11), 829–831 (2010). [CrossRef]
  16. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Fibre Nonlinearities in WDM-Systems with Reduced Channel-Spacing and Symbol-Rate,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P4.20.
  17. E. Grellier and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise,” Opt. Express19(13), 12781–12788 (2011). [CrossRef] [PubMed]
  18. J. Cai, Y. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s Capacity Transmission Over 6,860 km,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.
  19. J. Yu, X. Zhou, D. Qian, M. Huang, P. N. Ji, and G. Zhang, “20x112Gbit/s, 50GHz spaced, PolMux-RZ-QPSK straight-line transmission over 1540km of SSMF employing digital coherent detection and pure EDFA amplification,” in Proceedings ECOC 2008, Brussels, Belgium, 2008, Paper Th.2.A.2.
  20. J. Downie, J. E. Hurley, J. Cartledge, S. R. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK Signals over 7200 km of Optical Fiber with Very Large Effective Area and Ultra-Low Loss in 100 km Spans with EDFAs Only,” in Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMI6.
  21. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB6.
  22. C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express19(14), 12879–12884 (2011). [CrossRef] [PubMed]
  23. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Packham, “10 x 224-Gb/s WDM Transmission of 28-Gbaud PDM 16-QAM on a 50-GHz Grid over 1,200 km of Fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB8.
  24. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.2.
  25. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Noaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Effiency of 6.4 b/s/Hz using High-Speed DAC,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper We.8.C.1.
  26. A. Gnauck and P. J. Winzer, “Ultra-High-Spectral-Efficiency Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWE4.
  27. J. Yu and X. Zhou, “16 x 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett.22(17), 1312–1314 (2010). [CrossRef]
  28. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizuguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM Transmission over 160 km Using Linewidth-Tolerant Pilotless Digital Coherent Detection,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper pd2_4.
  29. J. Yu, X. Zhou, Y. Huang, S. Gupta, M. Huang, T. Wang, and P. Magill, “112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM Grid,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThM1.
  30. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express19(6), 5219–5224 (2011). [CrossRef] [PubMed]
  31. J.-X. Cai, M. Nissov, A. N. Pilipetskii, A. J. Lucero, C. R. Davidson, D. Foursa, H. Kidorf, M. A. Mills, R. Menges, P. C. Corbett, D. Sutton, and N. S. Bergano, “2.4 Tb/s (120 x 20 Gb/s) Transmission over Transoceanic Distance using Optimum FEC Overhead and 48% Spectral Efficiency,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper PD20.
  32. A. Agata, K. Tanaka, and N. Edagawa, “Study on the Optimum Reed-Solomon-Based FEC Codes for 40-Gb/s-Based Ultralong-Distance WDM transmission,” J. Lightwave Technol.20(12), 2189–2195 (2002). [CrossRef]
  33. M. O’Sullivan, “Expanding network application with coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper NWC3.
  34. S. R. Desbruslais and S. J. Savory, “Relationship Between Electrical Bandwidth and FEC Overhead in a 100 GbE Digital Coherent Receiver,” in Proceedings ECOC 2010, Torino, Italy, 2010, Paper P3.19.
  35. S. Dave, L. Esker, F. Mo, W. Thesling, J. Keszenheimer, and R. Fuerst, “Soft-decision Forward Error Correction in a 40-nm ASIC for 100-Gbps OTN Applications,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA014.
  36. J. Bromage, “Raman Amplification for Fiber Communications Systems,” J. Lightwave Technol.22(1), 79–93 (2004). [CrossRef]
  37. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical Links?” Opt. Express17(13), 10814–10819 (2009). [CrossRef] [PubMed]
  38. H. Bülow and E. S. Masalkina, “Coded Modulation in Optical Communications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OThO1.
  39. L. Beygi, E. Agrell, and M. Karlsson, “Optimization of 16-point Ring Constellations in the Presence of Nonlinear Phase Noise,” in Optical Fiber communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO4.
  40. E. Torrengo, S. Makovejs, D. Millar, I. Fatadin, R. Killey, S. Savory, and P. Bayvel, “Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission,” IEEE Photon. Technol. Lett.22(23), 1714–1716 (2010). [CrossRef]
  41. I. Lyubomirsky, A. Nilsson, M. Mitchell, and D. Welch, “Signal Chirp Design for Supression of Nonlinear Polarization Scattering in DP-QPSK Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThF3.
  42. B. Châtelain, C. Laperle, K. Roberts, X. Xu, M. Chagnon, A. Borowiec, F. Gagnon, J. Cartedge, and D. V. Plant, “Optimized Pulse Shaping for Intra-channel Nonlinearities Mitigation in a 10 Gbaud Dual-Polarization 16-QAM System,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited