OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3118–3128

Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm

Christopher C. Evans, Jonathan D. B. Bradley, Erwin A. Martí-Panameño, and Eric Mazur  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3118-3128 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm using the open aperture Z-scan technique. We fit the data with an extended model that includes multiphoton absorption, beam quality, and ellipticity. The extracted two- and three-photon absorption coefficients are below 1 mm/GW and 2 mm3/GW2, respectively. We observe negligible two-photon absorption for 813-nm light polarized along the extraordinary axis. We measure the nonlinear index of refraction and obtain two-photon nonlinear figures of merit greater than 1.1 at 774 nm and greater than 12 at 813 nm. Similarly, we obtain three-photon figures of merit that allow operational intensities up to 0.57 GW/mm2. We conclude that rutile is a promising material for all-optical switching applications around 800 nm.

© 2012 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(200.6715) Optics in computing : Switching

ToC Category:
Ultrafast Optics

Original Manuscript: December 15, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 20, 2012
Published: January 25, 2012

Christopher C. Evans, Jonathan D. B. Bradley, Erwin A. Martí-Panameño, and Eric Mazur, "Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm," Opt. Express 20, 3118-3128 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989). [CrossRef] [PubMed]
  2. M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28(4), 875–882 (1992). [CrossRef]
  3. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  4. G. I. Stegeman and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Philos. Trans. R. Soc. Lond. A 354(1708), 745–756 (1996). [CrossRef]
  5. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990). [CrossRef] [PubMed]
  6. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10(10), 490–492 (1985). [CrossRef] [PubMed]
  7. J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B 18(10), 5606–5614 (1978). [CrossRef]
  8. Y. Watanabe, M. Ohnishi, and T. Tsuchiya, “Measurement of nonlinear absorption and refraction in titanium dioxide single crystal by using a phase distortion method,” Appl. Phys. Lett. 66(25), 3431–3432 (1995). [CrossRef]
  9. A. Penzkofer and W. Falkenstein, “Direct determination of the intensity of picosecond light pulses by two-photon absorption,” Opt. Commun. 17(1), 1–5 (1976). [CrossRef]
  10. H. S. Waff and K. Park, “Structure in the two-photon absorption spectrum of TiO2 (Rutile),” Phys. Lett. A 32(2), 109–110 (1970). [CrossRef]
  11. P. Sathy and A. Penzkofer, “Three-photon absorption and its limitation of third-order nonlinear optical effects in rutile,” Appl. Phys. B 61(2), 127–134 (1995). [CrossRef]
  12. K. Watanabe, K. Inoue, and F. Minami, “Resonant phenomena of hyper-Raman-scattering of optic phonons in a TiO2 crystal,” Phys. Rev. B Condens. Matter 46(4), 2024–2033 (1992). [CrossRef] [PubMed]
  13. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn. 67(3), 653–660 (1994). [CrossRef]
  14. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009). [CrossRef]
  15. D. Torres-Torres, M. Trejo-Valdez, L. Castañeda, C. Torres-Torres, L. Tamayo-Rivera, R. C. Fernández-Hernández, J. A. Reyes-Esqueda, J. Muñoz-Saldaña, R. Rangel-Rojo, and A. Oliver, “Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles,” Opt. Express 18(16), 16406–16417 (2010). [CrossRef] [PubMed]
  16. M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010). [CrossRef]
  17. H. Long, G. Yang, A. Chen, Y. Li, and P. Lu, “Femtosecond Z-scan measurement of third-order optical nonlinearities in anatase TiO2 thin films,” Opt. Commun. 282(9), 1815–1818 (2009). [CrossRef]
  18. M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26–28 (2000).
  19. H. I. Elim, W. Ji, A. H. Yuwono, J. M. Xue, and J. Wang, “Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites,” Appl. Phys. Lett. 82(16), 2691–2693 (2003). [CrossRef]
  20. L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2.,” J. Colloid Interface Sci. 324(1-2), 99–104 (2008). [CrossRef] [PubMed]
  21. A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids,” J. Mater. Chem. 14(20), 2978–2987 (2004). [CrossRef]
  22. Q. F. Zhou, Q. Q. Zhang, J. X. Zhang, L. Y. Zhang, and X. Yao, “Preparation and optical properties of TiO2 nanocrystalline particles dispersed in SiO2 nano-composites,” Mater. Lett. 31(1-2), 39–42 (1997). [CrossRef]
  23. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  24. M. Higuchi, T. Hosokawa, and S. Kimura, “Growth of rutile single crystals by floating zone method,” J. Cryst. Growth 112(2-3), 354–358 (1991). [CrossRef]
  25. E. W. V. Stryland and M. Sheik-Bahae, “Z-Scan measurements of optical nonlinearities,” in Characterization techniques and tabulations for organic nonlinear optical materials, M. G. Kuzyk and C. W. Dirk, eds. (Marcel Dekker, 1998).
  26. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003). [CrossRef]
  27. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004). [CrossRef]
  28. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999). [CrossRef]
  29. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005). [CrossRef] [PubMed]
  30. B. M. Patterson, W. R. White, T. A. Robbins, and R. J. Knize, “Linear optical effects in z-scan measurements of thin films,” Appl. Opt. 37(10), 1854–1857 (1998). [CrossRef] [PubMed]
  31. D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonça, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277(2), 440–445 (2007). [CrossRef]
  32. K. Watanabe and K. Inoue, “Two-photon resonant effect of hyper-Raman scattering in the vicinity of the direct forbidden gap in a rutile crystal,” Phys. Rev. B Condens. Matter 41(11), 7957–7960 (1990). [CrossRef] [PubMed]
  33. C. C. Evans, J. D. B. Bradley, F. Parsy, K. C. Phillips, R. Senaratne, E. A. Martí-Panameño, and E. Mazur, “Thermally managed Z-scan measurements of titanium dioxide thin films,” presented at Photonics West, San Francisco, CA, USA, 27 Jan. 2011.
  34. B. Imangholi, M. P. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227(4-6), 337–341 (2003). [CrossRef]
  35. J. Yao, Z. Fan, Y. Jin, Y. Zhao, H. He, and J. Shao, “Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration,” Thin Solid Films 516(6), 1237–1241 (2008). [CrossRef]
  36. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005). [CrossRef]
  37. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  38. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  39. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon ring resonators,” Opt. Lett. 35(1), 55–57 (2010). [CrossRef] [PubMed]
  40. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett. 93(9), 091114 (2008). [CrossRef]
  41. B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13(23), 9230–9234 (2005). [CrossRef] [PubMed]
  42. B. Gu, X. Q. Huang, S. Q. Tan, M. Wang, and W. Ji, “Z-scan analytical theories for characterizing multiphoton absorbers,” Appl. Phys. B 95(2), 375–381 (2009). [CrossRef]
  43. J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44(2), 390–393 (2012). [CrossRef]
  44. S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on Z-scan measurements,” J. Opt. Soc. Am. B 13(5), 856–863 (1996). [CrossRef]
  45. M. G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca, “Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption,” Opt. Express 18(9), 9628–9633 (2010). [CrossRef] [PubMed]
  46. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,” Opt. Commun. 232(1-6), 417–423 (2004). [CrossRef]
  47. M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, U. Chatterjee, and T. Kobayashi, “Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots,” Opt. Lett. 34(23), 3644–3646 (2009). [CrossRef] [PubMed]
  48. T. Sarma, P. K. Panda, P. T. Anusha, and S. V. Rao, “Dinaphthoporphycenes: synthesis and nonlinear optical studies,” Org. Lett. 13(2), 188–191 (2011). [CrossRef] [PubMed]
  49. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997). [CrossRef]
  50. A. Eriksson, M. Lindgren, S. Svensson, and P.-O. Arntzen, “Numerical analysis of Z-scan experiments by use of a mode expansion,” J. Opt. Soc. Am. B 15(2), 810–816 (1998). [CrossRef]
  51. I. O. f. Standardization, ISO 11146–1:2005 Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios (Geneva, Switzerland, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 4 Fig. 2
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited