OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3129–3143

Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy

Alon Greenbaum and Aydogan Ozcan  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3129-3143 (2012)
http://dx.doi.org/10.1364/OE.20.003129


View Full Text Article

Enhanced HTML    Acrobat PDF (15516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lensfree in-line holographic microscopy offers sub-micron resolution over a large field-of-view (e.g., ~24 mm2) with a cost-effective and compact design suitable for field use. However, it is limited to relatively low-density samples. To mitigate this limitation, we demonstrate an on-chip imaging approach based on pixel super-resolution and phase recovery, which iterates among multiple lensfree intensity measurements, each having a slightly different sample-to-sensor distance. By digitally aligning and registering these lensfree intensity measurements, phase and amplitude images of dense and connected specimens can be iteratively reconstructed over a large field-of-view of ~24 mm2 without the use of any spatial masks. We demonstrate the success of this multi-height in-line holographic approach by imaging dense Papanicolaou smears (i.e., Pap smears) and blood samples.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: December 23, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: January 18, 2012
Published: January 25, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Alon Greenbaum and Aydogan Ozcan, "Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy," Opt. Express 20, 3129-3143 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3129


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  2. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express19(8), 7289–7298 (2011). [CrossRef] [PubMed]
  3. L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by Kalman filtering,” Opt. Express19(3), 2805–2814 (2011). [CrossRef] [PubMed]
  4. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  5. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011). [CrossRef] [PubMed]
  6. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett.32(8), 912–914 (2007). [CrossRef] [PubMed]
  7. T. C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Kor.13(4), 406–415 (2009). [CrossRef]
  8. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  9. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express17(4), 2880–2891 (2009). [CrossRef] [PubMed]
  10. K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010). [CrossRef] [PubMed]
  11. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010). [CrossRef] [PubMed]
  12. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A.98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  13. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006). [CrossRef] [PubMed]
  14. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.28(3), 164–166 (2003). [CrossRef] [PubMed]
  15. W. R. Rodriguez, N. Christodoulides, P. N. Floriano, S. Graham, S. Mohanty, M. Dixon, M. Hsiang, T. Peter, S. Zavahir, I. Thior, D. Romanovicz, B. Bernard, A. P. Goodey, B. D. Walker, and J. T. McDevitt, “A microchip CD4 counting method for HIV monitoring in resource-poor settings,” PLoS Med.2(7), e182 (2005). [CrossRef] [PubMed]
  16. M. S. Rahman, N. Ingole, D. Roblyer, V. Stepanek, R. Richards-Kortum, A. Gillenwater, S. Shastri, and P. Chaturvedi, “Evaluation of a low-cost, portable imaging system for early detection of oral cancer,” Head Neck Oncol2(1), 10 (2010). [CrossRef] [PubMed]
  17. S. Pang, X. Cui, J. DeModena, Y. M. Wang, P. Sternberg, and C. Yang, “Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate,” Lab Chip10(4), 411–414 (2010). [CrossRef] [PubMed]
  18. J. Balsam, M. Ossandon, Y. Kostov, H. A. Bruck, and A. Rasooly, “Lensless CCD-based fluorometer using a micromachined optical Söller collimator,” Lab Chip11(5), 941–949 (2011). [CrossRef] [PubMed]
  19. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE4(7), e6320 (2009). [CrossRef] [PubMed]
  20. T. S. Hauck, S. Giri, Y. Gao, and W. C. W. Chan, “Nanotechnology diagnostics for infectious diseases prevalent in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 438–448 (2010). [CrossRef] [PubMed]
  21. X. Li, J. Tian, T. Nguyen, and W. Shen, “Paper-based microfluidic devices by plasma treatment,” Anal. Chem.80(23), 9131–9134 (2008). [CrossRef] [PubMed]
  22. C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011). [CrossRef] [PubMed]
  23. A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, battery-operated, low-cost, bright field and fluorescence microscope,” PLoS ONE5(8), e11890 (2010). [CrossRef] [PubMed]
  24. D. T. Wong, “Salivary diagnostics powered by nanotechnologies, proteomics and genomics,” J. Am. Dent. Assoc.137(3), 313–321 (2006). [PubMed]
  25. D. Desai, G. Wu, and M. H. Zaman, “Tackling HIV through robust diagnostics in the developing world: current status and future opportunities,” Lab Chip11(2), 194–211 (2011). [CrossRef] [PubMed]
  26. G. Goddard, J. C. Martin, S. W. Graves, and G. Kaduchak, “Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer,” Cytometry A69A(2), 66–74 (2006). [CrossRef] [PubMed]
  27. W. Kuhn, D. Armstrong, S. Atteberry, E. Dewbrey, D. Smith, and N. Hooper, “Usefulness of the ParalensTM fluorescent microscope adaptor for the identification of mycobacteria in both field and laboratory settings,” Open Microbiol J4(1), 30–33 (2010). [CrossRef] [PubMed]
  28. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A.108(18), 7296–7301 (2011). [CrossRef] [PubMed]
  29. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  30. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip11(2), 315–322 (2011). [CrossRef] [PubMed]
  31. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010). [CrossRef] [PubMed]
  32. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip11(7), 1276–1279 (2011). [CrossRef] [PubMed]
  33. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  34. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3(1), 27–29 (1978). [CrossRef] [PubMed]
  35. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A10(3), 423–433 (1993). [CrossRef]
  36. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.199(1-4), 65–75 (2001). [CrossRef]
  37. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20(1), 40–55 (2003). [CrossRef] [PubMed]
  38. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett.93(2), 023903 (2004). [CrossRef] [PubMed]
  39. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  40. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  41. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc.206(3), 194–203 (2002). [CrossRef] [PubMed]
  42. P. Thibault and C. University, Algorithmic Methods in Diffraction Microscopy (Cornell University, 2007).
  43. J. Miao, J. Kirz, and D. Sayre, “The oversampling phasing method,” Acta Crystallogr. D Biol. Crystallogr.56(10), 1312–1315 (2000). [CrossRef] [PubMed]
  44. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A15(6), 1662–1669 (1998). [CrossRef]
  45. S. Marchesini, “Invited article: a unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum.78(1), 011301 (2007). [CrossRef] [PubMed]
  46. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  47. T. Latychevskaia and H. W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett.98(23), 233901 (2007). [CrossRef] [PubMed]
  48. R. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A7(3), 394–411 (1990). [CrossRef]
  49. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A75(4), 043805 (2007). [CrossRef]
  50. C. C. Chen, J. Miao, C. W. Wang, and T. K. Lee, “Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input-output method,” Phys. Rev. B76(6), 064113 (2007). [CrossRef]
  51. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A3(11), 1897–1907 (1986). [CrossRef]
  52. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express18(5), 4717–4726 (2010). [CrossRef] [PubMed]
  53. O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express19(18), 17378–17389 (2011). [CrossRef] [PubMed]
  54. J. R. Fienup and A. M. Kowalczyk, “Phase retrieval for a complex-valued object by using a low-resolution image,” J. Opt. Soc. Am. A7(3), 450–458 (1990). [CrossRef]
  55. G. Biener, A. Greenbaum, S. O. Isikman, K. Lee, D. Tseng, and A. Ozcan, “Combined reflection and transmission microscope for telemedicine applications in field settings,” Lab Chip11(16), 2738–2743 (2011). [CrossRef] [PubMed]
  56. T. R. Crimmins, J. R. Fienup, and B. J. Thelen, “Improved bounds on object support from autocorrelation support and application to phase retrieval,” J. Opt. Soc. Am. A7(1), 3–13 (1990). [CrossRef]
  57. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially-coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998). [CrossRef]
  58. A. M. Zysk, R. W. Schoonover, P. S. Carney, and M. A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett.35(13), 2239–2241 (2010). [CrossRef] [PubMed]
  59. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1971).
  60. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett.29(15), 1787–1789 (2004). [CrossRef] [PubMed]
  61. B. Das and C. S. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett.35(20), 3426–3428 (2010). [CrossRef] [PubMed]
  62. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A9(7), 1072–1085 (1992). [CrossRef]
  63. C. R. Vogel, T. Chanb, and R. Plemmons, “Fast algorithms for phase diversity-based blind deconvolution,” Proc. SPIE3353, 994–1005 (1998). [CrossRef]
  64. M. Noort, L. R. V. Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys.228(1-2), 191–215 (2005). [CrossRef]
  65. R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process.6(12), 1621–1633 (1997). [CrossRef] [PubMed]
  66. S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Sig. Process. Mag.20(3), 21–36 (2003). [CrossRef]
  67. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng.37(1), 247 (1998). [CrossRef]
  68. J. L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martínez, and J. Fernández-Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative study,” in Proceedings of 15th International Conference On Pattern Recognition, IEEE Computer Society, 2000 pp. 314–317.
  69. O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip10(18), 2419–2423 (2010). [CrossRef] [PubMed]
  70. M. Fremont‐Smith, J. Marino, B. Griffin, L. Spencer, and D. Bolick, “Comparison of the SurepathTM liquid‐based Papanicolaou smear with the conventional Papanicolaou smear in a multisite direct‐to‐vial study,” Cancer Cytopathol.102(5), 269–279 (2004). [CrossRef]
  71. S. O. Isikman, I. Sencan, O. Mudanyali, W. Bishara, C. Oztoprak, and A. Ozcan, “Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view,” Lab Chip10(9), 1109–1112 (2010). [CrossRef] [PubMed]
  72. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express2(9), 2721–2730 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited