OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3152–3157

Power transfer between neighboring planar waveguides

X. M. Bendaña and F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3152-3157 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to control light over very small distances is a problem of fundamental importance for a vast range of applications in communications, nanophotonics, and quantum information technologies. For this purpose, several methods have been proposed and demonstrated to confine and guide light, for example in dielectric and surface plasmon polariton (SPP) waveguides. Here, we study the interaction between different kinds of planar waveguides, which produces dramatic changes in the dispersion relation of the waveguide pair and even leads to mode suppression at small separations. This interaction also produces a transfer of power between the waveguides, which depends on the gap and propagation distances, thus providing a mechanism for optical signal transfer. We analytically study the properties of this interaction and the power transfer in different structures of interest including plasmonic and particle-array waveguides, for which we propose an experimental realization of these ideas.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: September 30, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 10, 2012
Published: January 26, 2012

X. M. Bendaña and F. J. García de Abajo, "Power transfer between neighboring planar waveguides," Opt. Express 20, 3152-3157 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13, 1501 (2001). [CrossRef]
  2. D. MarcuseTheory of Dielectric Optical Waveguides (Academic, 1974).
  3. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000). [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001). [CrossRef]
  6. X. M. Bendana and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17, 18826–18835 (2009). [CrossRef]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44 (2008). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature (London)424, 824–830 (2003). [CrossRef]
  9. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62, 16356–16359 (2000). [CrossRef]
  10. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  11. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60, 5751 (1999). [CrossRef]
  12. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102, 203904 (2009). [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  14. E. D. PalikHandbook of Optical Constants and Solids (Academic, 1985).
  15. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970).
  16. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004). [CrossRef]
  17. A. Manjavacas and F. J. Garcia de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett.9, 1285–1289 (2009). [CrossRef]
  18. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett.34, 310–312 (2009). [CrossRef] [PubMed]
  19. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90, 211101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited