OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3176–3191

Creation of four-mode weighted cluster states with atomic ensembles in high-Q ring cavities

Li-hui Sun, Yan-qin Chen, and Gao-xiang Li  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3176-3191 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two schemes for the preparation of weighted continuous variable cluster states with four atomic ensembles are proposed. In the first scheme, the four separated atomic ensembles inside a two-mode ring cavity are driven by pulse laser fields. The basic idea of the scheme is to transfer the ensemble bosonic modes into suitable linear combinations that can be prepared in a pure cluster state by a sequential application of the laser pulses with the aid of the cavity dissipation. In the second one, we take two separate two-mode cavities, each containing two atomic ensembles. The distant cavities are coupled by dissipation in a cascade way. It has been found that the mixed cluster state can be produced. These schemes may contribute towards implementing continuous variable quantum computation, quantum communication and networking based on atomic ensembles.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: October 14, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: January 20, 2012
Published: January 26, 2012

Li-hui Sun, Yan-qin Chen, and Gao-xiang Li, "Creation of four-mode weighted cluster states with atomic ensembles in high-Q ring cavities," Opt. Express 20, 3176-3191 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910 (2001). [CrossRef] [PubMed]
  2. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188 (2001). [CrossRef] [PubMed]
  3. J. Zhang and S. L. Braunstein, “Continuous-variable Gaussian analog of cluster states,” Phys. Rev. A73, 032318 (2006). [CrossRef]
  4. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett.97, 110501 (2006). [CrossRef] [PubMed]
  5. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett.101, 130501 (2008). [CrossRef] [PubMed]
  6. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables,” Phys. Rev. Lett.98, 070502 (2007). [CrossRef] [PubMed]
  7. P. van Loock, C. Weedbrook, and M. Gu, “Building Gaussian cluster states by linear optics,” Phys. Rev. A76, 032321 (2007). [CrossRef]
  8. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A78, 012301 (2008). [CrossRef]
  9. H. Zaidi, N. C. Menicucci, S. T. Flammia, R. Bloomer, M. Pysher, and O. Pfister, “Entangling the optical frequency comb: simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator,” Laser Phys.18, 659 (2008). [CrossRef]
  10. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, “Parallel generation of quadripartite cluster entanglement in the optical frequency comb,” Phys. Rev. Lett.107, 030505 (2011). [CrossRef] [PubMed]
  11. M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A79, 062318 (2009). [CrossRef]
  12. N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister,“Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A76, 010302 (2007). [CrossRef]
  13. N. C. Menicucci, X. Ma, and T. C. Ralph, “Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate,” Phys. Rev. Lett.104, 250503 (2010). [CrossRef] [PubMed]
  14. A. Tan, C. Xie, and K. Peng, “Quantum logical gates with linear quadripartite cluster states of continuous variables,” Phys. Rev. A79, 042338 (2009). [CrossRef]
  15. Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng, “Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters,” Phys. Rev. A81, 022311 (2010). [CrossRef]
  16. R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of unconditional one-way quantum computations for continuous variables,” Phys. Rev. Lett.106, 240504 (2011). [CrossRef] [PubMed]
  17. J. Zhang, G. Adesso, C. Xie, and K. Peng, “Quantum teamwork for unconditional multiparty communication with gaussian states,” Phys. Rev. A103, 070501 (2009).
  18. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London)414, 413–418 (2001). [CrossRef]
  19. M. Ying Wu, G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004). [CrossRef]
  20. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature (London)438, 828–832 (2005). [CrossRef]
  21. A. S. Parkins, E. Solano, and J. I. Cirac,“Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett.96, 053602 (2006). [CrossRef] [PubMed]
  22. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett.102, 020501 (2009). [CrossRef] [PubMed]
  23. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys.82, 1041–1093 (2010). [CrossRef]
  24. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys.7, 13–16 (2011). [CrossRef]
  25. C. A. Muschik, E. S. Polzik, and J. I. Cirac, “Dissipatively driven entanglement of two macroscopic atomic ensembles,” Phys. Rev. A83, 052312 (2011). [CrossRef]
  26. H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett.107, 080503 (2011). [CrossRef] [PubMed]
  27. C. A. Muschik, H. Krauter, K. Hammerer, and E. S. Polzik, “Quantum information at the Interface of light with mesoscopic objects,” arXiv:1105.2947 (2011).
  28. D.-C. Li, C.-H. Yuan, Z.-L. Cao, and W.-P. Zhang, “Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles,” Phys. Rev. A84, 022328 (2011). [CrossRef]
  29. J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, “”Dark” squeezed states of the motion of a trapped ion,” Phys. Rev. Lett.70, 556 (1993). [CrossRef] [PubMed]
  30. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller,“Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys.4, 878–883 (2008). [CrossRef]
  31. F. Verstraete, M. M. Wolf, and J. I. Cirac,“Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys.5, 633–636 (2009). [CrossRef]
  32. J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla, C. F. Roos, M. Hennrich, and R. Blatt,“Experimental multiparticle entanglement dynamics induced by decoherence,” Nat. Phys.6, 943–946 (2010). [CrossRef]
  33. H. J. Kimble, “The quantum internet,” Nature (London)453, 1023–1030 (2008). [CrossRef]
  34. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011). [CrossRef]
  35. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221 (1997). [CrossRef]
  36. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006). [CrossRef] [PubMed]
  37. X.Y. Lv̈, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009). [CrossRef]
  38. J. Zhang, “Continuous-variable multipartite unlockable bound entangled Gussian states,” Phys. Rev. A83, 052327 (2011). [CrossRef]
  39. J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental unconditional preparation and detection of a continuous bound entangled state of light,” Phys. Rev. Lett.107, 240503 (2011). [CrossRef]
  40. P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express19, 1207–1216 (2011). [CrossRef] [PubMed]
  41. S. B. Zheng, Z. B. Yang, and Y. Xia, “Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities,” Phys. Rev. A81, 015804 (2010). [CrossRef]
  42. L.-M. Duan, J. I. Cirac, and P. Zoller, “Three-dimensional theory for interaction between atomic ensembles and free-space light,” Phys. Rev. A66, 023818 (2002). [CrossRef]
  43. T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev.58, 1098–1113 (1940). [CrossRef]
  44. J. S. Peng and G. X. Li, Introduction to Modern Quantum Optics (World Scientific, 1998). [CrossRef]
  45. G.-X. Li, H.-T. Tan, and S.-P. Wu, “Motional entanglement for two trapped ions in cascaded optical cavities,” Phys. Rev. A70, 064301 (2004). [CrossRef]
  46. G.-X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A74, 055801 (2006). [CrossRef]
  47. S. L. W. Midgley, M. K. Olsen, A. S. Bradley, and O. Pfister,“Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator,” Phys. Rev. A82, 053826 (2010). [CrossRef]
  48. C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, 2000).
  49. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller,“Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722 (2000). [CrossRef] [PubMed]
  50. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2726–2729 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited